Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endothelial dysfunction and angiogenesis impairment in the ageing vasculature

Abstract

Ageing is the main risk factor for the development of cardiovascular diseases. A central mechanism by which ageing promotes vascular pathologies is compromising endothelial health. The age-related attenuation of endothelium-dependent dilator responses (endothelial dysfunction) associated with impairment of angiogenic processes and the subsequent pathological remodelling of the microcirculation contribute to compromised tissue perfusion and exacerbate functional decline in older individuals. This Review focuses on cellular, molecular, and functional changes that occur in the endothelium during ageing. We explore the links between oxidative and nitrative stress and the conserved molecular pathways affecting endothelial dysfunction and impaired angiogenesis during ageing. We also speculate on how these pathological processes could be therapeutically targeted. An improved understanding of endothelial biology in older patients is crucial for all cardiologists because maintenance of a competently functioning endothelium is critical for adequate tissue perfusion and long-term cardiac health.

Key points

  • Age-related endothelial dysfunction associated with impairment of angiogenic processes and the subsequent pathological remodelling of the microcirculation contribute to compromised tissue perfusion and exacerbate functional decline in older individuals.

  • The mechanisms underlying age-related endothelial dysfunction are multifaceted and are likely to involve increased oxidative and nitrative stress and alterations in the conserved molecular pathways affecting common ageing processes.

  • Age-related impairment of angiogenesis probably results from reduced nitric oxide bioavailability, metabolic dysregulation, altered angiomiR expression, NRF2 dysfunction, endothelial senescence and apoptosis, alterations in anti-geronic circulating factors and inducers of angiogenesis, and impaired pericyte function.

  • Anti-ageing interventions that prevent or reverse age-related endothelial dysfunction and improve angiogenesis are expected to confer cardiovascular protection and delay functional decline in older individuals, extending health span.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ageing signalling pathways that contribute to oxidative stress and endothelial dysfunction.
Fig. 2: Mechanisms by which ageing impairs angiogenesis.
Fig. 3: Ageing promotes both intrinsic angiogenic incompetence in endothelial cells and dysregulated tissue expression of genes governing angiogenesis.

Similar content being viewed by others

References

  1. Ungvari, Z., Kaley, G., de Cabo, R., Sonntag, W. E. & Csiszar, A. Mechanisms of vascular aging: new perspectives. J. Gerontol. A Biol. Sci. Med. Sci. 65, 1028–1041 (2010).

    Article  PubMed  Google Scholar 

  2. Lerman, A. & Zeiher, A. M. Endothelial function: cardiac events. Circulation 111, 363–368 (2005).

    Article  PubMed  Google Scholar 

  3. Asai, K. et al. Peripheral vascular endothelial dysfunction and apoptosis in old monkeys. Arterioscler. Thromb. Vasc. Biol. 20, 1493–1499 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. Csiszar, A. et al. Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ. Res. 90, 1159–1166 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. Donato, A. J. et al. SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. J. Physiol. 589, 4545–4554 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Li, W. et al. Premature death and age-related cardiac dysfunction in male eNOS-knockout mice. J. Mol. Cell. Cardiol. 37, 671–680 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. Harman, D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).

    Article  PubMed  CAS  Google Scholar 

  8. Jablonski, K. L., Seals, D. R., Eskurza, I., Monahan, K. D. & Donato, A. J. High-dose ascorbic acid infusion abolishes chronic vasoconstriction and restores resting leg blood flow in healthy older men. J. Appl. Physiol. 103, 1715–1721 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. Donato, A. J. et al. Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-κB. Circ. Res. 100, 1659–1666 (2007).

    Article  PubMed  CAS  Google Scholar 

  10. Adler, A. et al. NAD(P)H oxidase-generated superoxide anion accounts for reduced control of myocardial O2 consumption by NO in old Fischer 344 rats. Am. J. Physiol. Heart Circ. Physiol. 285, H1015–H1022 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. Sun, D. et al. Reduced release of nitric oxide to shear stress in mesenteric arteries of aged rats. Am. J. Physiol. Heart Circ. Physiol. 286, H2249–H2256 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Francia, P. et al. Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 110, 2889–2895 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. Tschudi, M. R. et al. Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery. J. Clin. Invest. 98, 899–905 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Tanabe, T. et al. Exercise training improves ageing-induced decrease in eNOS expression of the aorta. Acta Physiol. Scand. 178, 3–10 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. Woodman, C. R., Price, E. M. & Laughlin, M. H. Aging induces muscle-specific impairment of endothelium-dependent dilation in skeletal muscle feed arteries. J. Appl. Physiol. 93, 1685–1690 (2002).

    Article  PubMed  Google Scholar 

  16. Matsushita, H. et al. eNOS activity is reduced in senescent human endothelial cells: preservation by hTERT immortalization. Circ. Res. 89, 793–798 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. Hoffmann, J. et al. Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ. Res. 89, 709–715 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. Sindler, A. L., Delp, M. D., Reyes, R., Wu, G. & Muller-Delp, J. M. Effects of aging and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles. J. Physiol. 587, 3885–3897 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Berkowitz, D. E. et al. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation 108, 2000–2006 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. Csiszar, A. et al. Vasculoprotective effects of anti-tumor necrosis factor-α treatment in aging. Am. J. Pathol. 170, 388–398 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Flavahan, S., Chang, F. & Flavahan, N. A. Local renin-angiotensin system mediates endothelial dilator dysfunction in aging arteries. Am. J. Physiol. Heart Circ. Physiol. 311, H849–H854 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dai, D. F., Rabinovitch, P. S. & Ungvari, Z. Mitochondria and cardiovascular aging. Circ. Res. 110, 1109–1124 (2012).

    Article  PubMed  CAS  Google Scholar 

  23. Tarantini, S. et al. Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell 17, e12731 (2018).

    Article  CAS  Google Scholar 

  24. Gioscia-Ryan, R. A. et al. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J. Physiol. 592, 2549–2561 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. Wenzel, P. et al. Manganese superoxide dismutase and aldehyde dehydrogenase deficiency increase mitochondrial oxidative stress and aggravate age-dependent vascular dysfunction. Cardiovasc. Res. 80, 280–289 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Oelze, M. et al. Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging. Hypertension 63, 390–396 (2014).

    Article  PubMed  CAS  Google Scholar 

  28. Ungvari, Z. I. et al. Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats. Am. J. Physiol. Heart Circ. Physiol. 294, H2121–H2128 (2008).

    Article  PubMed  CAS  Google Scholar 

  29. van der Loo, B. et al. Enhanced peroxynitrite formation is associated with vascular aging. J. Exp. Med. 192, 1731–1744 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Csiszar, A. et al. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1. Mech. Ageing Dev. 130, 518–527 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Burns, E. M., Kruckeberg, T. W., Comerford, L. E. & Buschmann, M. T. Thinning of capillary walls and declining numbers of endothelial mitochondria in the cerebral cortex of the aging primate, Macaca nemestrina. J. Gerontol. 34, 642–650 (1979).

    Article  PubMed  CAS  Google Scholar 

  32. Burns, E. M., Kruckeberg, T. W. & Gaetano, P. K. Changes with age in cerebral capillary morphology. Neurobiol. Aging 2, 283–291 (1981).

    Article  PubMed  CAS  Google Scholar 

  33. Tarantini, S. et al. Nrf2 deficiency exacerbates obesity-induced oxidative stress, neurovascular dysfunction, blood brain barrier disruption, neuroinflammation, amyloidogenic gene expression and cognitive decline in mice, mimicking the aging phenotype. J. Gerontol. A Biol. Sci. Med. Sci. https://doi.org/10.1093/gerona/glx177 (2017).

    Article  Google Scholar 

  34. Ungvari, Z. et al. Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of Nrf2-mediated antioxidant response. Am. J. Physiol. Heart Circ. Physiol. 301, H363–H372 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ungvari, Z. et al. Age-associated vascular oxidative stress, Nrf2 dysfunction and NF-kB activation in the non-human primate Macaca mulatta. J. Gerontol. A Biol. Sci. Med. Sci. 66, 866–875 (2011).

    Article  PubMed  CAS  Google Scholar 

  36. Perridon, B. W., Leuvenink, H. G., Hillebrands, J. L., van Goor, H. & Bos, E. M. The role of hydrogen sulfide in aging and age-related pathologies. Aging 8, 2264–2289 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yuan, S. et al. Hydrogen sulfide metabolism regulates endothelial solute barrier function. Redox Biol. 9, 157–166 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hine, C. & Mitchell, J. R. Calorie restriction and methionine restriction in control of endogenous hydrogen sulfide production by the transsulfuration pathway. Exp. Gerontol. 68, 26–32 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. Ungvari, Z. I. et al. Increased mitochondrial H2O2 production promotes endothelial NF-kB activation in aged rat arteries. Am. J. Physiol. Heart Circ. Physiol. 293, H37–H47 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. Sahoo, S., Meijles, D. N. & Pagano, P. J. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases? Clin. Sci. 130, 317–335 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Csiszar, A., Wang, M., Lakatta, E. G. & Ungvari, Z. I. Inflammation and endothelial dysfunction during aging: role of NF-κB. J. Appl. Physiol. 105, 1333–1341 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lee, I. M. & Paffenbarger, R. S. Jr. Physical activity and stroke incidence: the Harvard Alumni Health Study. Stroke 29, 2049–2054 (1998).

    Article  PubMed  CAS  Google Scholar 

  43. Taddei, S. et al. Physical activity prevents age-related impairment in nitric oxide availability in elderly athletes. Circulation 101, 2896–2901 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. DeSouza, C. A. et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 102, 1351–1357 (2000).

    Article  PubMed  CAS  Google Scholar 

  45. Spier, S. A. et al. Exercise training enhances flow-induced vasodilation in skeletal muscle resistance arteries of aged rats: role of PGI2 and nitric oxide. Am. J. Physiol. Heart Circ. Physiol. 292, H3119–H3127 (2007).

    Article  PubMed  CAS  Google Scholar 

  46. Trott, D. W., Gunduz, F., Laughlin, M. H. & Woodman, C. R. Exercise training reverses age-related decrements in endothelium-dependent dilation in skeletal muscle feed arteries. J. Appl. Physiol. 106, 1925–1934 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Durrant, J. R. et al. Voluntary wheel running restores endothelial function in conduit arteries of old mice: direct evidence for reduced oxidative stress, increased superoxide dismutase activity and down-regulation of NADPH oxidase. J. Physiol. 587, 3271–3285 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Pacher, P., Beckman, J. S. & Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ma, L. et al. Anti-peroxynitrite treatment ameliorated vasorelaxation of resistance arteries in aging rats: involvement with NO-sGC-cGKs pathway. PLoS ONE 9, e104788 (2014).

    Article  CAS  Google Scholar 

  50. Xu, S. et al. Detection of sequence-specific tyrosine nitration of manganese SOD and SERCA in cardiovascular disease and aging. Am. J. Physiol. Heart Circ. Physiol. 290, H2220–H2227 (2006).

    Article  PubMed  CAS  Google Scholar 

  51. Burkle, A., Beneke, S. & Muiras, M. L. Poly(ADP-ribosyl)ation and aging. Exp. Gerontol. 39, 1599–1601 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. Pacher, P. et al. A new, potent poly(ADP-ribose) polymerase inhibitor improves cardiac and vascular dysfunction associated with advanced aging. J. Pharmacol. Exp. Ther. 311, 485–491 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Pacher, P. et al. Endothelial dysfunction in aging animals: the role of poly(ADP-ribose) polymerase activation. Br. J. Pharmacol. 135, 1347–1350 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ha, H. C., Hester, L. D. & Snyder, S. H. Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc. Natl Acad. Sci. USA 99, 3270–3275 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. Carrillo, A. et al. Transcription regulation of TNF-alpha-early response genes by poly(ADP-ribose) polymerase-1 in murine heart endothelial cells. Nucleic Acids Res. 32, 757–766 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Andreone, T. L., O’Connor, M., Denenberg, A., Hake, P. W. & Zingarelli, B. Poly(ADP-ribose) polymerase-1 regulates activation of activator protein-1 in murine fibroblasts. J. Immunol. 170, 2113–2120 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. Zingarelli, B. et al. Absence of poly(ADP-ribose)polymerase-1 alters nuclear factor-kappa B activation and gene expression of apoptosis regulators after reperfusion injury. Mol. Med. 9, 143–153 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hassa, P. O. & Hottiger, M. O. A role of poly (ADP-ribose) polymerase in NF-kappaB transcriptional activation. Biol. Chem. 380, 953–959 (1999).

    Article  PubMed  CAS  Google Scholar 

  59. Pacher, P. & Szabo, C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am. J. Pathol. 173, 2–13 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Berger, N. A. et al. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br. J. Pharmacol. 175, 192–222 (2018).

    Article  PubMed  CAS  Google Scholar 

  61. Baur, J. A., Ungvari, Z., Minor, R. K., Le Couteur, D. G. & de Cabo, R. Are sirtuins viable targets for improving healthspan and lifespan? Nat. Rev. Drug Discov. 11, 443–461 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gano, L. B. et al. The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice. Am. J. Physiol. Heart Circ. Physiol. 307, H1754–H1763 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. de Picciotto, N. E. et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522–530 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Lynch, C. D. et al. Effects of moderate caloric restriction on cortical microvascular density and local cerebral blood flow in aged rats. Neurobiol. Aging 20, 191–200 (1999).

    Article  PubMed  CAS  Google Scholar 

  65. Csiszar, A. et al. Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats. Am. J. Physiol. Heart Circ. Physiol. 307, H292–H306 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Csiszar, A. et al. Circulating factors induced by caloric restriction in the nonhuman primate Macaca mulatta activate angiogenic processes in endothelial cells. J. Gerontol. A Biol. Sci. Med. Sci. 68, 235–249 (2013).

    Article  PubMed  CAS  Google Scholar 

  67. Katare, R. G., Kakinuma, Y., Arikawa, M., Yamasaki, F. & Sato, T. Chronic intermittent fasting improves the survival following large myocardial ischemia by activation of BDNF/VEGF/PI3K signaling pathway. J. Mol. Cell. Cardiol. 46, 405–412 (2009).

    Article  PubMed  CAS  Google Scholar 

  68. Pierce, G. L. et al. Weight loss alone improves conduit and resistance artery endothelial function in young and older overweight/obese adults. Hypertension 52, 72–79 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lesniewski, L. A., Zigler, M. C., Durrant, J. R., Donato, A. J. & Seals, D. R. Sustained activation of AMPK ameliorates age-associated vascular endothelial dysfunction via a nitric oxide-independent mechanism. Mech. Ageing Dev. 133, 368–371 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Lin, A. L. et al. Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease. J. Cereb. Blood Flow Metab. 33, 1412–1421 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Dai, D. F. et al. Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13, 529–539 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lesniewski, L. A. et al. Dietary rapamycin supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways. Aging Cell 16, 17–26 (2017).

    Article  PubMed  CAS  Google Scholar 

  74. Lin, A. L. et al. Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer’s disease. J. Cereb. Blood Flow Metab. 37, 217–226 (2017).

    Article  PubMed  CAS  Google Scholar 

  75. Durik, M. et al. Nucleotide excision DNA repair is associated with age-related vascular dysfunction. Circulation 126, 468–478 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Bhayadia, R., Schmidt, B. M., Melk, A. & Homme, M. Senescence-induced oxidative stress causes endothelial dysfunction. J. Gerontol. A Biol. Sci. Med. Sci. 71, 161–169 (2016).

    Article  PubMed  CAS  Google Scholar 

  78. Ungvari, Z. et al. Cerebromicrovascular dysfunction predicts cognitive decline and gait abnormalities in a mouse model of whole brain irradiation-induced accelerated brain senescence. GeroScience 39, 33–42 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. LaRocca, T. J. et al. Translational evidence that impaired autophagy contributes to arterial ageing. J. Physiol. 590, 3305–3316 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Masser, D. R. et al. Analysis of DNA modifications in aging research. Geroscience 40, 11–29 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Benayoun, B. A., Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16, 593–610 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Unnikrishnan, A. et al. Revisiting the genomic hypomethylation hypothesis of aging. Ann. NY Acad. Sci. https://doi.org/10.1111/nyas.13533 (2018).

    Article  PubMed  Google Scholar 

  83. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Man, H. S., Yan, M. S., Lee, J. J. & Marsden, P. A. Epigenetic determinants of cardiovascular gene expression: vascular endothelium. Epigenomics 8, 959–979 (2016).

    Article  PubMed  CAS  Google Scholar 

  85. Galonska, C. et al. Genome-wide tracking of dCas9-methyltransferase footprints. Nat. Commun. 9, 597 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Toth, P. et al. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell 14, 1034–1044 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sonntag, W. E. et al. Insulin-like growth factor-1 in CNS and cerebrovascular aging. Front. Aging Neurosci. 5, 27 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Bailey-Downs, L. C. et al. Liver-specific knockdown of IGF-1 decreases vascular oxidative stress resistance by impairing the Nrf2-dependent antioxidant response: a novel model of vascular aging. J. Gerontol. Biol. Med. Sci. 67, 313–329 (2012).

    Article  CAS  Google Scholar 

  89. Csiszar, A. et al. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice. Am. J. Physiol. Heart Circ. Physiol. 295, H1882–H1894 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Tarnawski, A. S., Pai, R., Tanigawa, T., Matysiak-Budnik, T. & Ahluwalia, A. PTEN silencing reverses aging-related impairment of angiogenesis in microvascular endothelial cells. Biochem. Biophys. Res. Commun. 394, 291–296 (2010).

    Article  PubMed  CAS  Google Scholar 

  91. Bach, M. H., Sadoun, E. & Reed, M. J. Defects in activation of nitric oxide synthases occur during delayed angiogenesis in aging. Mech. Ageing Dev. 126, 467–473 (2005).

    Article  PubMed  CAS  Google Scholar 

  92. Sadoun, E. & Reed, M. J. Impaired angiogenesis in aging is associated with alterations in vessel density, matrix composition, inflammatory response, and growth factor expression. J. Histochem. Cytochem. 51, 1119–1130 (2003).

    Article  PubMed  CAS  Google Scholar 

  93. Ahluwalia, A. & Tarnawski, A. S. Activation of the metabolic sensor — AMP activated protein kinase reverses impairment of angiogenesis in aging myocardial microvascular endothelial cells. Implications for the aging heart. J. Physiol. Pharmacol. 62, 583–587 (2011).

    PubMed  CAS  Google Scholar 

  94. Lahteenvuo, J. & Rosenzweig, A. Effects of aging on angiogenesis. Circ. Res. 110, 1252–1264 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Ingraham, J. P., Forbes, M. E., Riddle, D. R. & Sonntag, W. E. Aging reduces hypoxia-induced microvascular growth in the rodent hippocampus. J. Gerontol. A Biol. Sci. Med. Sci. 63, 12–20 (2008).

    Article  PubMed  Google Scholar 

  96. Anversa, P., Li, P., Sonnenblick, E. H. & Olivetti, G. Effects of aging on quantitative structural properties of coronary vasculature and microvasculature in rats. Am. J. Physiol. 267, H1062–H1073 (1994).

    PubMed  CAS  Google Scholar 

  97. Murugesan, N., Demarest, T. G., Madri, J. A. & Pachter, J. S. Brain regional angiogenic potential at the neurovascular unit during normal aging. Neurobiol. Aging 33, 1004.e1–1004.e16 (2011).

    Article  CAS  Google Scholar 

  98. Benderro, G. F. & Lamanna, J. C. Hypoxia-induced angiogenesis is delayed in aging mouse brain. Brain Res. 1389, 50–60 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Goligorsky, M. S. Microvascular rarefaction: the decline and fall of blood vessels. Organogenesis 6, 1–10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ungvari, Z. et al. Aging-induced dysregulation of Dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J. Gerontol. A Biol. Sci. Med. Sci. 68, 877–891 (2013).

    Article  PubMed  CAS  Google Scholar 

  101. Ziche, M. et al. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J. Clin. Invest. 99, 2625–2634 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Sladek, T., Gerova, M., Znojil, V. & Devat, L. Morphometric characteristics of cardiac hypertrophy induced by long-term inhibition of NO synthase. Physiol. Res. 45, 335–338 (1996).

    PubMed  CAS  Google Scholar 

  103. Kubis, N., Richer, C., Domergue, V., Giudicelli, J. F. & Levy, B. I. Role of microvascular rarefaction in the increased arterial pressure in mice lacking for the endothelial nitric oxide synthase gene (eNOS3pt−/−). J. Hypertens. 20, 1581–1587 (2002).

    Article  PubMed  CAS  Google Scholar 

  104. Oomen, C. A. et al. Resveratrol preserves cerebrovascular density and cognitive function in aging mice. Front. Aging Neurosci. 1, 4 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Sawada, N. & Arany, Z. Metabolic regulation of angiogenesis in diabetes and aging. Physiology 32, 290–307 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Maizel, J. et al. Sirtuin 1 ablation in endothelial cells is associated with impaired angiogenesis and diastolic dysfunction. Am. J. Physiol. Heart Circ. Physiol. 307, H1691–H1704 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ahluwalia, A. & Tarnawski, A. S. Activation of the metabolic sensor-AMP activated protein kinase reverses impairment of angiogenesis in aging myocardial microvascular endothelial cells. Implications for the aging heart. J. Physiol. Pharmacol. 62, 583–587 (2011).

    PubMed  CAS  Google Scholar 

  108. de Lucia, C. et al. microRNA in cardiovascular aging and age-related cardiovascular diseases. Front. Med. 4, 74 (2017).

    Article  Google Scholar 

  109. Bonauer, A. et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710–1713 (2009).

    Article  PubMed  CAS  Google Scholar 

  110. Doebele, C. et al. Members of the microRNA-17-92 cluster exhibit a cell intrinsic anti-angiogenic function in endothelial cells. Blood 115, 4944–4950 (2010).

    Article  PubMed  CAS  Google Scholar 

  111. Kuehbacher, A., Urbich, C., Zeiher, A. M. & Dimmeler, S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ. Res. 101, 59–68 (2007).

    Article  PubMed  CAS  Google Scholar 

  112. Suarez, Y., Fernandez-Hernando, C., Pober, J. S. & Sessa, W. C. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ. Res. 100, 1164–1173 (2007).

    Article  PubMed  CAS  Google Scholar 

  113. Suarez, Y. et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc. Natl Acad. Sci. USA 105, 14082–14087 (2008).

    Article  PubMed  Google Scholar 

  114. Yang, W. J. et al. Dicer is required for embryonic angiogenesis during mouse development. J. Biol. Chem. 280, 9330–9335 (2005).

    Article  PubMed  CAS  Google Scholar 

  115. Yan, Y. et al. Dicer expression exhibits a tissue-specific diurnal pattern that is lost during aging and in diabetes. PLoS ONE 8, e80029 (2013).

    Article  CAS  Google Scholar 

  116. Che, P. et al. miR-125a-5p impairs endothelial cell angiogenesis in aging mice via RTEF-1 downregulation. Aging Cell 13, 926–934 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Wei, Y. et al. Nrf2 acts cell-autonomously in endothelium to regulate tip cell formation and vascular branching. Proc. Natl Acad. Sci. USA 110, E3910–E3918 (2013).

    Article  PubMed  Google Scholar 

  118. Valcarcel-Ares, M. N. et al. Disruption of Nrf2 signaling impairs angiogenic capacity of endothelial cells: implications for microvascular aging. J. Gerontol. A Biol. Sci. Med. Sci. 67, 821–829 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Ungvari, Z. et al. Ionizing radiation promotes the acquisition of a senescence-associated secretory phenotype and impairs angiogenic capacity in cerebromicrovascular endothelial cells: role of increased DNA damage and decreased DNA repair capacity in microvascular radiosensitivity. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1443–1457 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Warrington, J. P. et al. Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. J. Vasc. Res. 50, 445–457 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Roos, C. M. et al. Transcriptional and phenotypic changes in aorta and aortic valve with aging and MnSOD deficiency in mice. Am. J. Physiol. Heart Circ. Physiol. 305, H1428–H1439 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Franco, S., Segura, I., Riese, H. H. & Blasco, M. A. Decreased B16F10 melanoma growth and impaired vascularization in telomerase-deficient mice with critically short telomeres. Cancer Res. 62, 552–559 (2002).

    PubMed  CAS  Google Scholar 

  123. Murasawa, S. et al. Constitutive human telomerase reverse transcriptase expression enhances regenerative properties of endothelial progenitor cells. Circulation 106, 1133–1139 (2002).

    Article  PubMed  CAS  Google Scholar 

  124. Csiszar, A., Ungvari, Z., Koller, A., Edwards, J. G. & Kaley, G. Proinflammatory phenotype of coronary arteries promotes endothelial apoptosis in aging. Physiol. Genom. 17, 21–30 (2004).

    Article  CAS  Google Scholar 

  125. Pearson, K. J. et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 8, 157–168 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Khan, A. S., Lynch, C. D., Sane, D. C., Willingham, M. C. & Sonntag, W. E. Growth hormone increases regional coronary blood flow and capillary density in aged rats. J. Gerontol. A Biol. Sci. Med. Sci. 56, B364–B371 (2001).

    Article  PubMed  CAS  Google Scholar 

  127. Tarantini, S. et al. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. Age 38, 273–289 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Sonntag, W. E., Lynch, C. D., Cooney, P. T. & Hutchins, P. M. Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology 138, 3515–3520 (1997).

    Article  PubMed  CAS  Google Scholar 

  129. Scheubel, R. J. et al. Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. J. Am. Coll. Cardiol. 42, 2073–2080 (2003).

    Article  PubMed  Google Scholar 

  130. Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Tucsek, Z. et al. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J. Gerontol. A Biol. Sci. Med. Sci. 69, 1339–1352 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. van Almen, G. C. et al. MicroRNA-18 and microRNA-19 regulate CTGF and TSP-1 expression in age-related heart failure. Aging Cell 10, 769–779 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Wagatsuma, A. Effect of aging on expression of angiogenesis-related factors in mouse skeletal muscle. Exp. Gerontol. 41, 49–54 (2006).

    Article  PubMed  CAS  Google Scholar 

  134. Ryan, N. A. et al. Lower skeletal muscle capillarization and VEGF expression in aged versus young men. J. Appl. Physiol. 100, 178–185 (2006).

    Article  PubMed  CAS  Google Scholar 

  135. Iemitsu, M., Maeda, S., Jesmin, S., Otsuki, T. & Miyauchi, T. Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. Am. J. Physiol. Heart Circ. Physiol. 291, H1290–H1298 (2006).

    Article  PubMed  CAS  Google Scholar 

  136. Mieno, S. et al. Aging is associated with an impaired coronary microvascular response to vascular endothelial growth factor in patients. J. Thorac. Cardiovasc. Surg. 132, 1348–1355 (2006).

    Article  PubMed  CAS  Google Scholar 

  137. Sarzani, R., Arnaldi, G., Takasaki, I., Brecher, P. & Chobanian, A. V. Effects of hypertension and aging on platelet-derived growth factor and platelet-derived growth factor receptor expression in rat aorta and heart. Hypertension 18 (Suppl.), III93–III99 (1991).

    PubMed  CAS  Google Scholar 

  138. Banki, E. et al. Age-related decline of autocrine pituitary adenylate cyclase-activating polypeptide impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J. Gerontol. A Biol. Sci. Med. Sci. 70, 665–674 (2015).

    Article  PubMed  CAS  Google Scholar 

  139. Bearzi, C. et al. Identification of a coronary vascular progenitor cell in the human heart. Proc. Natl Acad. Sci. USA 106, 15885–15890 (2009).

    Article  PubMed  Google Scholar 

  140. Chang, E. I. et al. Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1alpha stabilization during ischemia. Circulation 116, 2818–2829 (2007).

    Article  PubMed  CAS  Google Scholar 

  141. Heiss, C. et al. Impaired progenitor cell activity in age-related endothelial dysfunction. J. Am. Coll. Cardiol. 45, 1441–1448 (2005).

    Article  PubMed  CAS  Google Scholar 

  142. Thijssen, D. H. et al. Haematopoietic stem cells and endothelial progenitor cells in healthy men: effect of aging and training. Aging Cell 5, 495–503 (2006).

    Article  PubMed  CAS  Google Scholar 

  143. Keymel, S. et al. Impaired endothelial progenitor cell function predicts age-dependent carotid intimal thickening. Bas. Res. Cardiol. 103, 582–586 (2008).

    Article  Google Scholar 

  144. He, T., Joyner, M. J. & Katusic, Z. S. Aging decreases expression and activity of glutathione peroxidase-1 in human endothelial progenitor cells. Microvasc. Res. 78, 447–452 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Kushner, E. J. et al. Aging is associated with a proapoptotic endothelial progenitor cell phenotype. J. Vasc. Res. 48, 408–414 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Turgeon, J. et al. Protection against vascular aging in Nox2-deficient mice: impact on endothelial progenitor cells and reparative neovascularization. Atherosclerosis 223, 122–129 (2012).

    Article  PubMed  CAS  Google Scholar 

  147. Thum, T. et al. Age-dependent impairment of endothelial progenitor cells is corrected by growth-hormone-mediated increase of insulin-like growth-factor-1. Circ. Res. 100, 434–443 (2007).

    Article  PubMed  CAS  Google Scholar 

  148. Hoetzer, G. L. et al. Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J. Appl. Physiol. 102, 847–852 (2007).

    Article  PubMed  Google Scholar 

  149. Zhu, G. et al. Young environment reverses the declined activity of aged rat-derived endothelial progenitor cells: involvement of the phosphatidylinositol 3-kinase/Akt signaling pathway. Ann. Vasc. Surg. 23, 519–534 (2009).

    Article  PubMed  Google Scholar 

  150. Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Kelly-Goss, M. R., Sweat, R. S., Stapor, P. C., Peirce, S. M. & Murfee, W. L. Targeting pericytes for angiogenic therapies. Microcirculation 21, 345–357 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Stapor, P. C., Sweat, R. S., Dashti, D. C., Betancourt, A. M. & Murfee, W. L. Pericyte dynamics during angiogenesis: new insights from new identities. J. Vasc. Res. 51, 163–174 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Toth, P. et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J. Cereb. Blood Flow Metab. 33, 1732–1742 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Stefanska, A. et al. Interstitial pericytes decrease in aged mouse kidneys. Aging 7, 370–382 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Hughes, S. et al. Altered pericyte-endothelial relations in the rat retina during aging: implications for vessel stability. Neurobiol. Aging 27, 1838–1847 (2006).

    Article  PubMed  CAS  Google Scholar 

  156. Yang, J. et al. Synchronized age-related gene expression changes across multiple tissues in human and the link to complex diseases. Sci. Rep. 5, 15145 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the AHA (S.T.), the US National Institute on Aging (R01-AG055395, R01-AG047879, R01-AG038747, P30-AG050911, and R01AG049821), the US National Institute of Neurological Disorders and Stroke (R01-NS056218 and R01-NS100782), the US National Heart, Lung, and Blood Institute (R01-HL111178 and R01-HL134778), the Oklahoma Center for the Advancement of Science and Technology, and the Presbyterian Health Foundation. The authors acknowledge support from the National Institute on Aging-funded Geroscience Training Program in Oklahoma, USA (T32AG052363), and the EU-funded EFOP-3.6.1-16-2016-0008 programme.

Reviewer information

Nature Reviews Cardiology thanks J. Padilla and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Zoltan Ungvari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ungvari, Z., Tarantini, S., Kiss, T. et al. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol 15, 555–565 (2018). https://doi.org/10.1038/s41569-018-0030-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0030-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing