Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Controversies around epithelial–mesenchymal plasticity in cancer metastasis

This article has been updated

Abstract

Experimental evidence accumulated over decades has implicated epithelial–mesenchymal plasticity (EMP), which collectively encompasses epithelial–mesenchymal transition and the reverse process of mesenchymal–epithelial transition, in tumour metastasis, cancer stem cell generation and maintenance, and therapeutic resistance. However, the dynamic nature of EMP processes, the apparent need to reverse mesenchymal changes for the development of macrometastases and the likelihood that only minor cancer cell subpopulations exhibit EMP at any one time have made such evidence difficult to accrue in the clinical setting. In this Perspectives article, we outline the existing preclinical and clinical evidence for EMP and reflect on recent controversies, including the failure of initial lineage-tracing experiments to confirm a major role for EMP in dissemination, and discuss accumulating data suggesting that epithelial features and/or a hybrid epithelial–mesenchymal phenotype are important in metastasis. We also highlight strategies to address the complexities of therapeutically targeting the EMP process that give consideration to its spatially and temporally divergent roles in metastasis, with the view that this will yield a potent and broad class of therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of EMP stimuli.
Fig. 2: Therapy-induced EMT and potential EMT-suppressing regimens.
Fig. 3: Therapeutic opportunities to address EMP.

Similar content being viewed by others

Change history

  • 08 November 2019

    The article was updated to add the ORCID ID for Elizabeth D. Williams.

References

  1. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    CAS  PubMed  Google Scholar 

  2. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    CAS  PubMed  Google Scholar 

  3. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

    CAS  PubMed  Google Scholar 

  4. Yang, X. & Meng, T. MicroRNA-431 affects trophoblast migration and invasion by targeting ZEB1 in preeclampsia. Gene 683, 225–232 (2019).

    CAS  PubMed  Google Scholar 

  5. Owusu-Akyaw, A., Krishnamoorthy, K., Goldsmith, L. T. & Morelli, S. S. The role of mesenchymal-epithelial transition in endometrial function. Hum. Reprod. Update 25, 114–133 (2019).

    PubMed  Google Scholar 

  6. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Alix-Panabieres, C., Mader, S. & Pantel, K. Epithelial-mesenchymal plasticity in circulating tumor cells. J. Mol. Med. 95, 133–142 (2017).

    CAS  PubMed  Google Scholar 

  8. Bhatia, S., Monkman, J., Toh, A. K. L., Nagaraj, S. H. & Thompson, E. W. Targeting epithelial-mesenchymal plasticity in cancer: clinical and preclinical advances in therapy and monitoring. Biochem. J. 474, 3269–3306 (2017).

    CAS  PubMed  Google Scholar 

  9. Francart, M. E. et al. Epithelial-mesenchymal plasticity and circulating tumor cells: travel companions to metastases. Dev. Dyn. 247, 432–450 (2018).

    PubMed  Google Scholar 

  10. McInnes, L. M. et al. Clinical implications of circulating tumor cells of breast cancer patients: role of epithelial-mesenchymal plasticity. Front. Oncol. 5, 42 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Oltean, S. et al. Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proc. Natl Acad. Sci. USA 103, 14116–14121 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stylianou, N. et al. A molecular portrait of epithelial-mesenchymal plasticity in prostate cancer associated with clinical outcome. Oncogene 38, 913–934 (2019).

    CAS  PubMed  Google Scholar 

  13. Tachtsidis, A. et al. Human-specific RNA analysis shows uncoupled epithelial-mesenchymal plasticity in circulating and disseminated tumour cells from human breast cancer xenografts. Clin. Exp. Metastasis 36, 393–409 (2019).

    CAS  PubMed  Google Scholar 

  14. Malek, R., Wang, H., Taparra, K. & Tran, P. T. Therapeutic targeting of epithelial plasticity programs: focus on the epithelial-mesenchymal transition. Cells Tissues Organs 203, 114–127 (2017).

    CAS  PubMed  Google Scholar 

  15. Santamaria, P. G., Moreno-Bueno, G. & Cano, A. Contribution of epithelial plasticity to therapy resistance. J. Clin. Med. 8, 676 (2019).

    PubMed Central  Google Scholar 

  16. Said, N. A., Simpson, K. J. & Williams, E. D. Strategies and challenges for systematically mapping biologically significant molecular pathways regulating carcinoma epithelial-mesenchymal transition. Cells Tissues Organs 197, 424–434 (2013).

    CAS  PubMed  Google Scholar 

  17. Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131–142 (2006).

    CAS  PubMed  Google Scholar 

  18. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  19. Jolly, M. K. et al. Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front. Oncol. 5, 155 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Brabletz, T., Kalluri, R., Nieto, M. A. & Weinberg, R. A. EMT in cancer. Nat. Rev. Cancer 18, 128–134 (2018).

    CAS  PubMed  Google Scholar 

  21. Krebs, M. G. et al. Molecular analysis of circulating tumour cells-biology and biomarkers. Nat. Rev. Clin. Oncol. 11, 129–144 (2014).

    CAS  PubMed  Google Scholar 

  22. van Denderen, B. J. & Thompson, E. W. Cancer: the to and fro of tumour spread. Nature 493, 487–488 (2013).

    PubMed  Google Scholar 

  23. Brabletz, T. EMT and MET in metastasis: where are the cancer stem cells? Cancer Cell 22, 699–701 (2012).

    CAS  PubMed  Google Scholar 

  24. Chaffer, C. L., San Juan, B. P., Lim, E. & Weinberg, R. A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 35, 645–654 (2016).

    PubMed  Google Scholar 

  25. Thompson, E. W. & Haviv, I. The social aspects of EMT-MET plasticity. Nat. Med. 17, 1048–1049 (2011).

    CAS  PubMed  Google Scholar 

  26. Kahlert, U. D., Joseph, J. V. & Kruyt, F. A. E. EMT- and MET-related processes in nonepithelial tumors: importance for disease progression, prognosis, and therapeutic opportunities. Mol. Oncol. 11, 860–877 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Carmichael, C. L. & Haigh, J. J. The Snail family in normal and malignant haematopoiesis. Cells Tissues Organs 203, 82–98 (2017).

    CAS  PubMed  Google Scholar 

  28. Alba-Castellon, L. et al. Snail1 expression is required for sarcomagenesis. Neoplasia 16, 413–421 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Baulida, J. Epithelial-to-mesenchymal transition transcription factors in cancer-associated fibroblasts. Mol. Oncol. 11, 847–859 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rowe, R. G. et al. Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. J. Cell Biol. 184, 399–408 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Christiansen, J. J. & Rajasekaran, A. K. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66, 8319–8326 (2006).

    CAS  PubMed  Google Scholar 

  32. Thompson, E. W., Newgreen, D. F. & Tarin, D. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res. 65, 5991–5995 (2005).

    CAS  PubMed  Google Scholar 

  33. Beerling, E. et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. 14, 2281–2288 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Krebs, A. M. et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 19, 518–529 (2017).

    CAS  PubMed  Google Scholar 

  36. Padmanaban, V. et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature 573, 439–444 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jia, D. et al. Testing the gene expression classification of the EMT spectrum. Phys. Biol. 16, 025002 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Klymkowsky, M. W. & Savagner, P. Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am. J. Pathol. 174, 1588–1593 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kroger, C. et al. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc. Natl Acad. Sci. USA 116, 7353–7362 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. Pastushenko, I. et al. Identification of the tumour transition states occurring during EMT. Nature 556, 463–468 (2018).

    CAS  PubMed  Google Scholar 

  41. Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C. & Kuperwasser, C. Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell 24, 65–78 (2019).

    CAS  PubMed  Google Scholar 

  42. Thompson, E. W. & Nagaraj, S. H. Transition states that allow cancer to spread. Nature 556, 442–444 (2018).

    CAS  PubMed  Google Scholar 

  43. Hiscox, S. et al. Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int. J. Cancer 118, 290–301 (2006).

    CAS  PubMed  Google Scholar 

  44. Marin-Aguilera, M. et al. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol. Cancer Ther. 13, 1270–1284 (2014).

    CAS  PubMed  Google Scholar 

  45. Lesniak, D. et al. Spontaneous epithelial-mesenchymal transition and resistance to HER-2-targeted therapies in HER-2-positive luminal breast cancer. PLOS ONE 8, e71987 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Miyazaki, S. et al. Anti-VEGF antibody therapy induces tumor hypoxia and stanniocalcin 2 expression and potentiates growth of human colon cancer xenografts. Int. J. Cancer 135, 295–307 (2014).

    CAS  PubMed  Google Scholar 

  47. Shintani, Y. et al. Epithelial to mesenchymal transition is a determinant of sensitivity to chemoradiotherapy in non-small cell lung cancer. Ann. Thorac. Surg. 92, 1794–1804 (2011).

    PubMed  Google Scholar 

  48. Le Magnen, C., Dutta, A. & Abate-Shen, C. Optimizing mouse models for precision cancer prevention. Nat. Rev. Cancer 16, 187–196 (2016).

    PubMed  PubMed Central  Google Scholar 

  49. Trimboli, A. J. et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 68, 937–945 (2008).

    CAS  PubMed  Google Scholar 

  50. Rios, A. C. et al. Intraclonal plasticity in mammary tumors revealed through large-scale single-cell resolution 3D imaging. Cancer Cell 35, 953 (2019).

    CAS  PubMed  Google Scholar 

  51. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Redfern A. D., et al Predictive value of de novo and induced epithelial-mesenchymal transition in locally advanced breast cancer treated with neoadjuvant chemotherapy. Cancer Res. 76 https://doi.org/10.1158/1538-7445.SABCS15-P1-05-0 (2016).

  53. Jolly, M. K. et al. Coupling the modules of EMT and stemness: a tunable ‘stemness window’ model. Oncotarget 6, 25161–25174 (2015).

    PubMed  PubMed Central  Google Scholar 

  54. Nitta, T. et al. Prognostic significance of epithelial-mesenchymal transition-related markers in extrahepatic cholangiocarcinoma: comprehensive immunohistochemical study using a tissue microarray. Br. J. Cancer 111, 1363–1372 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sarrio, D. et al. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 68, 989–997 (2008).

    CAS  PubMed  Google Scholar 

  56. Zhang, H. et al. Clinical significance of E-cadherin, β-catenin, vimentin and S100A4 expression in completely resected squamous cell lung carcinoma. J. Clin. Pathol. 66, 937–945 (2013).

    PubMed  Google Scholar 

  57. Wen, K. C. et al. The role of EpCAM in tumor progression and the clinical prognosis of endometrial carcinoma. Gynecol. Oncol. 148, 383–392 (2018).

    CAS  PubMed  Google Scholar 

  58. Yamada, S. et al. Epithelial to mesenchymal transition is associated with shorter disease-free survival in hepatocellular carcinoma. Ann. Surg. Oncol. 21, 3882–3890 (2014).

    PubMed  Google Scholar 

  59. Wang, G., Pan, J., Zhang, L. & Wang, C. Overexpression of grainyhead-like transcription factor 2 is associated with poor prognosis in human pancreatic carcinoma. Oncol. Lett. 17, 1491–1496 (2019).

    PubMed  Google Scholar 

  60. Wu, R. S. et al. OVOL2 antagonizes TGF-β signaling to regulate epithelial to mesenchymal transition during mammary tumor metastasis. Oncotarget 8, 39401–39416 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Shi, M. et al. MicroRNA-200 and microRNA-30 family as prognostic molecular signatures in ovarian cancer: a meta-analysis. Medicine 97, e11505 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Powell, E. et al. A functional genomic screen in vivo identifies CEACAM5 as a clinically relevant driver of breast cancer metastasis. NPJ Breast Cancer 4, 9 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Huang, W., Martin, E. E., Burman, B., Gonzalez, M. E. & Kleer, C. G. The matricellular protein CCN6 (WISP3) decreases Notch1 and suppresses breast cancer initiating cells. Oncotarget 7, 25180–25193 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. Prat, A. et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12, R68 (2010).

    PubMed  PubMed Central  Google Scholar 

  65. Tan, T. Z. et al. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol. Med. 6, 1279–1293 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Blick, T. et al. Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44hi/CD24lo/- stem cell phenotype in human breast cancer. J. Mammary Gland. Biol. Neoplasia 15, 235–252 (2010).

    PubMed  Google Scholar 

  67. Kotiyal, S. & Bhattacharya, S. Breast cancer stem cells, EMT and therapeutic targets. Biochem. Biophys. Res. Commun. 453, 112–166 (2014).

    CAS  PubMed  Google Scholar 

  68. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Morel, A. P. et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLOS ONE 3, e2888 (2008).

    PubMed  PubMed Central  Google Scholar 

  70. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Ocaña, O. H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22, 709–724 (2012).

    PubMed  Google Scholar 

  72. Zhu, Q. C., Gao, R. Y., Wu, W. & Qin, H. L. Epithelial-mesenchymal transition and its role in the pathogenesis of colorectal cancer. Asian Pac. J. Cancer Prev. 14, 2689–2698 (2013).

    PubMed  Google Scholar 

  73. Xu, S. et al. Characterization of mouse models of early pancreatic lesions induced by alcohol and chronic pancreatitis. Pancreas 44, 882–887 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, J. et al. Human primary epithelial cells acquire an epithelial-mesenchymal-transition phenotype during long-term infection by the oral opportunistic pathogen, Porphyromonas gingivalis. Front. Cell Infect. Microbiol. 7, 493 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Yang, S. Z. et al. HBx protein induces EMT through c-Src activation in SMMC-7721 hepatoma cell line. Biochem. Biophys. Res. Commun. 382, 555–560 (2009).

    CAS  PubMed  Google Scholar 

  76. Shen, H. J. et al. Cigarette smoke-induced alveolar epithelial-mesenchymal transition is mediated by Rac1 activation. Biochim. Biophys. Acta 1840, 1838–1849 (2014).

    CAS  PubMed  Google Scholar 

  77. Wang, Y., Xu, M., Ke, Z. & Luo, J. Cellular and molecular mechanism underlying alcohol-induced aggressiveness of breast cancer. Pharmacol. Res. 115, 299–308 (2017).

    CAS  PubMed  Google Scholar 

  78. Puisieux, A., Brabletz, T. & Caramel, J. Oncogenic roles of EMT-inducing transcription factors. Nat. Cell Biol. 16, 488–494 (2014).

    CAS  PubMed  Google Scholar 

  79. Li, J. et al. The EMT transcription factor Zeb2 controls adult murine hematopoietic differentiation by regulating cytokine signaling. Blood 129, 460–472 (2017).

    CAS  PubMed  Google Scholar 

  80. Liskova, P. et al. Ectopic GRHL2 expression due to non-coding mutations promotes cell state transition and causes posterior polymorphous corneal dystrophy 4. Am. J. Hum. Genet. 102, 447–459 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sharma, V. P. et al. Mutations in TCF12, encoding a basic helix-loop-helix partner of TWIST1, are a frequent cause of coronal craniosynostosis. Nat. Genet. 45, 304–307 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hugo, H. J. et al. Epithelial requirement for in vitro proliferation and xenograft growth and metastasis of MDA-MB-468 human breast cancer cells: oncogenic rather than tumor-suppressive role of E-cadherin. Breast Cancer Res. 19, 86 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gunasinghe, N. P., Wells, A., Thompson, E. W. & Hugo, H. J. Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev. 31, 469–478 (2012).

    CAS  PubMed  Google Scholar 

  84. Joseph, J. P., Harishankar, M. K., Pillai, A. A. & Devi, A. Hypoxia induced EMT: a review on the mechanism of tumor progression and metastasis in OSCC. Oral. Oncol. 80, 23–32 (2018).

    CAS  PubMed  Google Scholar 

  85. Wei, L. et al. Leptin promotes epithelial-mesenchymal transition of breast cancer via the upregulation of pyruvate kinase M2. J. Exp. Clin. Cancer Res. 35, 166 (2016).

    PubMed  PubMed Central  Google Scholar 

  86. Feng, H. et al. Leptin promotes metastasis by inducing an epithelial-mesenchymal transition in A549 lung cancer cells. Oncol. Res. 21, 165–171 (2013).

    PubMed  Google Scholar 

  87. Peppicelli, S., Bianchini, F., Torre, E. & Calorini, L. Contribution of acidic melanoma cells undergoing epithelial-to-mesenchymal transition to aggressiveness of non-acidic melanoma cells. Clin. Exp. Metastasis 31, 423–433 (2014).

    CAS  PubMed  Google Scholar 

  88. Deng, S. et al. MiR-652 inhibits acidic microenvironment-induced epithelial-mesenchymal transition of pancreatic cancer cells by targeting ZEB1. Oncotarget 6, 39661–39675 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Suzuki, A., Maeda, T., Baba, Y., Shimamura, K. & Kato, Y. Acidic extracellular pH promotes epithelial mesenchymal transition in Lewis lung carcinoma model. Cancer Cell Int. 14, 129 (2014).

    PubMed  PubMed Central  Google Scholar 

  90. Marin-Hernandez, A. et al. Hypoglycemia enhances epithelial-mesenchymal transition and invasiveness, and restrains the Warburg phenotype, in hypoxic HeLa cell cultures and microspheroids. J. Cell Physiol. 232, 1346–1359 (2017).

    CAS  PubMed  Google Scholar 

  91. Wei, S. C. et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17, 678–688 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rice, A. J. et al. Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6, e352 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Brabletz, T. et al. Nuclear overexpression of the oncoprotein β-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol. Res. Pract. 194, 701–704 (1998).

    CAS  PubMed  Google Scholar 

  94. Brabletz, T. et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl Acad. Sci. USA 98, 10356–10361 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zlobec, I. & Lugli, A. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget 1, 651–661 (2010).

    PubMed  PubMed Central  Google Scholar 

  96. Bronsert, P. et al. Cancer cell invasion and EMT marker expression: a three-dimensional study of the human cancer-host interface. J. Pathol. 234, 410–422 (2014).

    CAS  PubMed  Google Scholar 

  97. Zhao, Z. et al. In vivo visualization and characterization of epithelial-mesenchymal transition in breast tumors. Cancer Res. 76, 2094–2104 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Del Pozo Martin, Y. et al. Mesenchymal cancer cell-stroma crosstalk promotes niche activation, epithelial reversion, and metastatic colonization. Cell Rep. 13, 2456–2469 (2015).

    PubMed  PubMed Central  Google Scholar 

  99. Puram, S. V., Parikh, A. S. & Tirosh, I. Single cell RNA-seq highlights a role for a partial EMT in head and neck cancer. Mol. Cell Oncol. 5, e1448244 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zheng, X. et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527, 525–530 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang, Z., Yang, M., Li, Y., Yang, F. & Feng, Y. Exosomes derived from hypoxic colorectal cancer cells transfer Wnt4 to normoxic cells to elicit a prometastatic phenotype. Int. J. Biol. Sci. 14, 2094–2102 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. El-Sayed, I. Y. et al. Extracellular vesicles released by mesenchymal-like prostate carcinoma cells modulate EMT state of recipient epithelial-like carcinoma cells through regulation of AR signaling. Cancer Lett. 410, 100–111 (2017).

    CAS  PubMed  Google Scholar 

  104. Lobb, R. J. et al. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. Int. J. Cancer 141, 614–620 (2017).

    CAS  PubMed  Google Scholar 

  105. Wu, S. et al. Classification of circulating tumor cells by epithelial-mesenchymal transition markers. PLOS ONE 10, e0123976 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. Markiewicz, A. et al. Mesenchymal phenotype of CTC-enriched blood fraction and lymph node metastasis formation potential. PLOS ONE 9, e93901 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Strati, A. et al. Gene expression profile of circulating tumor cells in breast cancer by RT-qPCR. BMC Cancer 11, 422 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sarioglu, A. F. et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 12, 685–691 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Aceto, N. et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158, 1110–1122 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ting, D. T. et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 8, 1905–1918 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Gkountela, S. et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell 176, 98–112.e14 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Papadaki, M. A. et al. Circulating tumor cells with stemness and epithelial-to-mesenchymal transition features are chemoresistant and predictive of poor outcome in metastatic breast cancer. Mol. Cancer Ther. 18, 437–447 (2019).

    CAS  PubMed  Google Scholar 

  113. de Wit, S. et al. EpCAMhigh and EpCAMlow circulating tumor cells in metastatic prostate and breast cancer patients. Oncotarget 9, 35705–35716 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Driemel, C. et al. Context-dependent adaption of EpCAM expression in early systemic esophageal cancer. Oncogene 33, 4904–4915 (2014).

    CAS  PubMed  Google Scholar 

  115. Liu, C. et al. Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis. Sci. Adv. 5, eaav4275 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Hiraga, T. Hypoxic microenvironment and metastatic bone disease. Int. J. Mol. Sci. 19, E3523 (2018).

    PubMed  Google Scholar 

  117. Chao, Y., Wu, Q., Acquafondata, M., Dhir, R. & Wells, A. Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron. 5, 19–28 (2012).

    CAS  PubMed  Google Scholar 

  118. Chao, Y., Wu, Q., Shepard, C. & Wells, A. Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin. Exp. Metastasis 29, 39–50 (2012).

    CAS  PubMed  Google Scholar 

  119. Chao, Y. L., Shepard, C. R. & Wells, A. Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol. Cancer 9, 179 (2010).

    PubMed  PubMed Central  Google Scholar 

  120. Kowalski, P. J., Rubin, M. A. & Kleer, C. G. E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res. 5, R217–222 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wells, A., Chao, Y. L., Grahovac, J., Wu, Q. & Lauffenburger, D. A. Epithelial and mesenchymal phenotypic switchings modulate cell motility in metastasis. Front. Biosci. 16, 815–837 (2011).

    CAS  Google Scholar 

  122. Saha, B. et al. Overexpression of E-cadherin protein in metastatic breast cancer cells in bone. Anticancer. Res. 27, 3903–3908 (2007).

    PubMed  Google Scholar 

  123. Bhullar, D. S. et al. Biomarker concordance between primary colorectal cancer and its metastases. EBioMedicine 40, 363–374 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Choi, W. et al. p63 expression defines a lethal subset of muscle-invasive bladder cancers. PLOS ONE 7, e30206 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chaffer, C. L. et al. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res. 66, 11271–11278 (2006).

    CAS  PubMed  Google Scholar 

  126. Celia-Terrassa, T. et al. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J. Clin. Invest. 122, 1849–1868 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Dykxhoorn, D. M. et al. miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLOS ONE 4, e7181 (2009).

    PubMed  PubMed Central  Google Scholar 

  128. Shamir, E. R. et al. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J. Cell Biol. 204, 839–856 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Shamir, E. R., Coutinho, K., Georgess, D., Auer, M. & Ewald, A. J. Twist1-positive epithelial cells retain adhesive and proliferative capacity throughout dissemination. Biol. Open 5, 1216–1228 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Korpal, M. et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17, 1101–1108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Celia-Terrassa, T. et al. Hysteresis control of epithelial-mesenchymal transition dynamics conveys a distinct program with enhanced metastatic ability. Nat. Commun. 9, 5005 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. Tran, H. D. et al. Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res. 74, 6330–6340 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Tsai, J. H., Donaher, J. L., Murphy, D. A., Chau, S. & Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22, 725–736 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Stankic, M. et al. TGFβ-Id1 signaling opposes Twist1 and promotes metastatic colonization via a mesenchymal-to-epithelial transition. Cell Rep. 5, 1228–1242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Behnsawy, H. M., Miyake, H., Harada, K. & Fujisawa, M. Expression patterns of epithelial-mesenchymal transition markers in localized prostate cancer: significance in clinicopathological outcomes following radical prostatectomy. BJU Int. 111, 30–37 (2013).

    PubMed  Google Scholar 

  136. Gravdal, K., Halvorsen, O. J., Haukaas, S. A. & Akslen, L. A. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin. Cancer Res. 13, 7003–7011 (2007).

    CAS  PubMed  Google Scholar 

  137. Sethi, S., Macoska, J., Chen, W. & Sarkar, F. H. Molecular signature of epithelial-mesenchymal transition (EMT) in human prostate cancer bone metastasis. Am. J. Transl. Res. 3, 90–99 (2010).

    PubMed  PubMed Central  Google Scholar 

  138. Yamamoto, M. et al. Intratumoral bidirectional transitions between epithelial and mesenchymal cells in triple-negative breast cancer. Cancer Sci. 108, 1210–1222 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gao, D. et al. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res. 72, 1384–1394 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yates, C. C., Shepard, C. R., Stolz, D. B. & Wells, A. Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br. J. Cancer 96, 1246–1252 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Aiello, N. M. et al. Metastatic progression is associated with dynamic changes in the local microenvironment. Nat. Commun. 7, 12819 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ackland, M. L. et al. Epidermal growth factor-induced epithelio-mesenchymal transition in human breast carcinoma cells. Lab. Invest. 83, 435–448 (2003).

    CAS  PubMed  Google Scholar 

  143. Dumont, N. et al. Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc. Natl Acad. Sci. USA 105, 14867–14872 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ye, X. et al. Upholding a role for EMT in breast cancer metastasis. Nature 547, E1–E3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Aiello, N. M. et al. Upholding a role for EMT in pancreatic cancer metastasis. Nature 547, E7–E8 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Xu, Y. et al. Breast tumor cell-specific knockout of Twist1 inhibits cancer cell plasticity, dissemination, and lung metastasis in mice. Proc. Natl Acad. Sci. USA 114, 11494–11499 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Fischer, K. R., Altorki, N. K., Mittal, V. & Gao, D. Fischer et al. reply. Nature 547, E5–E6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Somarelli, J. A. et al. Distinct routes to metastasis: plasticity-dependent and plasticity-independent pathways. Oncogene 35, 4302–4311 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Rhim, A. D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Castano, Z. et al. IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat. Cell Biol. 20, 1084–1097 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Cheng, C., Qin, Y., Li, Y., Pan, J. & Wang, J. Expression of Twist protein in colorectal carcinoma and its effect on proliferation and invasion of colorectal cancer cells. Pak. J. Pharm. Sci. 30, 641–645 (2017).

    CAS  PubMed  Google Scholar 

  152. Qi, J. et al. SNAI1 promotes the development of HCC through the enhancement of proliferation and inhibition of apoptosis. FEBS Open Bio. 6, 326–337 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Title, A. C. et al. Genetic dissection of the miR-200-Zeb1 axis reveals its importance in tumor differentiation and invasion. Nat. Commun. 9, 4671 (2018).

    PubMed  PubMed Central  Google Scholar 

  154. Yang, C. et al. Long noncoding RNA HCP5 contributes to epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation and interacting with miR-139-5p. Am J. Transl. Res. 11, 953–963 (2019).

    PubMed  PubMed Central  Google Scholar 

  155. Mejlvang, J. et al. Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Mol. Biol. Cell 18, 4615–4624 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. George, J. T., Jolly, M. K., Xu, S., Somarelli, J. A. & Levine, H. Survival outcomes in cancer patients predicted by a partial EMT gene expression scoring metric. Cancer Res. 77, 6415–6428 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Foroutan, M. et al. Single sample scoring of molecular phenotypes. BMC Bioinformatics 19, 404 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Goossens, N., Hoshida, Y. & Aguirre-Ghiso, J. A. Origin and interpretation of cancer transcriptome profiling: the essential role of the stroma in determining prognosis and drug resistance. EMBO Mol. Med. 7, 1385–1387 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Dunne, P. D. et al. Challenging the cancer molecular stratification dogma: intratumoral heterogeneity undermines consensus molecular subtypes and potential diagnostic value in colorectal cancer. Clin. Cancer Res. 22, 4095–4104 (2016).

    CAS  PubMed  Google Scholar 

  160. Lawson, D. A. et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature 526, 131–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Cook, D. P. & Vanderhyden, B. C. Comparing transcriptional dynamics of the epithelial-mesenchymal transition. Preprint at bioRxiv https://doi.org/10.1101/732412 (2019).

  162. Bhatia, S. et al. Interrogation of phenotypic plasticity between epithelial and mesenchymal states in breast cancer. J. Clin. Med. 8, E893 (2019).

    PubMed  Google Scholar 

  163. Jolly, M. K. et al. Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget 7, 27067–27084 (2016).

    PubMed  PubMed Central  Google Scholar 

  164. Chaffer, C. L. et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154, 61–74 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Redfern, A. D., Spalding, L. J. & Thompson, E. W. The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome. Clin. Exp. Metastasis 35, 285–308 (2018).

    PubMed  Google Scholar 

  166. Puhr, M. et al. Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. Am. J. Pathol. 181, 2188–2201 (2012).

    CAS  PubMed  Google Scholar 

  167. Creighton, C. J. et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl Acad. Sci. USA 106, 13820–13825 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Qu, H., Fang, L., Duan, L. & Long, X. [Expression of ABCG2 and p-glycoprotein in residual breast cancer tissue after chemotherapy and their correlation with epithelial-mesenchymal transition]. Zhonghua Bing Li Xue Za Zhi 43, 236–240 (2014).

    PubMed  Google Scholar 

  169. Hara, J. et al. Mesenchymal phenotype after chemotherapy is associated with chemoresistance and poor clinical outcome in esophageal cancer. Oncol. Rep. 31, 589–596 (2014).

    CAS  PubMed  Google Scholar 

  170. Bhangu, A. et al. The role of epithelial mesenchymal transition and resistance to neoadjuvant therapy in locally advanced rectal cancer. Colorectal Dis. 16, O133–143 (2014).

    CAS  PubMed  Google Scholar 

  171. Kawamoto, A. et al. Radiation induces epithelial-mesenchymal transition in colorectal cancer cells. Oncol. Rep. 27, 51–57 (2012).

    CAS  PubMed  Google Scholar 

  172. Martin, O. A., Anderson, R. L., Narayan, K. & MacManus, M. P. Does the mobilization of circulating tumour cells during cancer therapy cause metastasis? Nat. Rev. Clin. Oncol. 14, 32–44 (2017).

    CAS  PubMed  Google Scholar 

  173. Martin, O. A. et al. Mobilization of viable tumor cells into the circulation during radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 88, 395–403 (2014).

    PubMed  Google Scholar 

  174. Alves, C. L., Elias, D., Lyng, M. B., Bak, M. & Ditzel, H. J. SNAI2 upregulation is associated with an aggressive phenotype in fulvestrant-resistant breast cancer cells and is an indicator of poor response to endocrine therapy in estrogen receptor-positive metastatic breast cancer. Breast Cancer Res. 20, 60 (2018).

    PubMed  PubMed Central  Google Scholar 

  175. Sun, Y. et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res. 72, 527–536 (2012).

    CAS  PubMed  Google Scholar 

  176. Frederick, B. A. et al. Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non-small cell lung carcinoma. Mol. Cancer Ther. 6, 1683–1691 (2007).

    CAS  PubMed  Google Scholar 

  177. Kim, H. R. et al. Epithelial-mesenchymal transition leads to crizotinib resistance in H2228 lung cancer cells with EML4-ALK translocation. Mol. Oncol. 7, 1093–1102 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Huang, D. et al. Hypoxia induces actin cytoskeleton remodeling by regulating the binding of CAPZA1 to F-actin via PIP2 to drive EMT in hepatocellular carcinoma. Cancer Lett. 448, 117–127 (2019).

    CAS  PubMed  Google Scholar 

  179. Singh, S. K., Mishra, M. K. & Singh, R. Hypoxia-inducible factor-1α induces CX3CR1 expression and promotes the epithelial to mesenchymal transition (EMT) in ovarian cancer cells. J. Ovarian. Res. 12, 42 (2019).

    PubMed  PubMed Central  Google Scholar 

  180. Yang, Z., Yu, W., Huang, R., Ye, M. & Min, Z. SIRT6/HIF-1α axis promotes papillary thyroid cancer progression by inducing epithelial–mesenchymal transition. Cancer Cell Int. 19, 17 (2019).

    PubMed  PubMed Central  Google Scholar 

  181. Zhang, J. et al. Hypoxia-induced LncRNA PCGEM1 promotes invasion and metastasis of gastric cancer through regulating SNAI1. Clin. Transl Oncol. 21, 1142–1151 (2019).

    CAS  PubMed  Google Scholar 

  182. Sauvant, C. et al. Acidosis induces multi-drug resistance in rat prostate cancer cells (AT1) in vitro and in vivo by increasing the activity of the p-glycoprotein via activation of p38. Int. J .Cancer 123, 2532–2542 (2008).

    CAS  PubMed  Google Scholar 

  183. Thews, O. & Riemann, A. Tumor pH and metastasis: a malignant process beyond hypoxia. Cancer Metastasis Rev. 38, 113–129 (2019).

    CAS  PubMed  Google Scholar 

  184. Chockley, P. J. & Keshamouni, V. G. Immunological consequences of epithelial-mesenchymal transition in tumor progression. J. Immunol. 197, 691–698 (2016).

    CAS  PubMed  Google Scholar 

  185. Terry, S. et al. New insights into the role of EMT in tumor immune escape. Mol. Oncol. 11, 824–846 (2017).

    PubMed  PubMed Central  Google Scholar 

  186. Davis, F. M., Stewart, T. A., Thompson, E. W. & Monteith, G. R. Targeting EMT in cancer: opportunities for pharmacological intervention. Trends Pharmacol. Sci. 35, 479–488 (2014).

    CAS  PubMed  Google Scholar 

  187. Behbahani, G. et al. MicroRNA-mediated post-transcriptional regulation of epithelial to mesenchymal transition in cancer. Pathol. Oncol. Res. 23, 1–12 (2017).

    CAS  PubMed  Google Scholar 

  188. Li, Y. et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 69, 6704–6712 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Meidhof, S. et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol. Med. 7, 831–847 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Beg, M. S. et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs 35, 180–188 (2017).

    CAS  PubMed  Google Scholar 

  191. van Zandwijk, N. et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18, 1386–1396 (2017).

    PubMed  Google Scholar 

  192. Scherbakov, A. M., Andreeva, O. E., Shatskaya, V. A. & Krasil'nikov, M. A. The relationships between snail1 and estrogen receptor signaling in breast cancer cells. J. Cell Biochem. 113, 2147–2155 (2012).

    CAS  PubMed  Google Scholar 

  193. Haslehurst, A. M. et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 12, 91 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Witta, S. E. et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res. 66, 944–950 (2006).

    CAS  PubMed  Google Scholar 

  195. Baylis, F. & McLeod, M. First-in-human phase 1 CRISPR gene editing cancer trials: are we ready? Curr. Gene Ther. 17, 309–319 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Garcia Bloj, B. et al. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget 7, 60535–60554 (2016).

    PubMed  PubMed Central  Google Scholar 

  197. Moses, C. et al. Activating PTEN tumor suppressor expression with the CRISPR/dCas9 system. Mol. Ther. Nucleic Acids 14, 287–300 (2019).

    CAS  PubMed  Google Scholar 

  198. Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).

    CAS  PubMed  Google Scholar 

  199. Said, N. A. & Williams, E. D. Growth factors in induction of epithelial-mesenchymal transition and metastasis. Cells Tissues Organs 193, 85–97 (2011).

    CAS  PubMed  Google Scholar 

  200. Loh, Y. N. et al. The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer. BMC Cancer 13, 174 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Buonato, J. M. & Lazzara, M. J. ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res. 74, 309–319 (2014).

    CAS  PubMed  Google Scholar 

  202. Liu, J. et al. Association of tumour-associated macrophages with cancer cell EMT, invasion, and metastasis of Kazakh oesophageal squamous cell cancer. Diagn. Pathol. 14, 55 (2019).

    PubMed  PubMed Central  Google Scholar 

  203. Zhang, Q. et al. Interaction of transforming growth factor-β-Smads/microRNA-362-3p/CD82 mediated by M2 macrophages promotes the process of epithelial-mesenchymal transition in hepatocellular carcinoma cells. Cancer Sci. 110, 2507–2519 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Li, S. et al. Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. J. Exp. Clin. Cancer Res. 38, 6 (2019).

    PubMed  PubMed Central  Google Scholar 

  205. Donnarumma, E. et al. Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget 8, 19592–19608 (2017).

    PubMed  PubMed Central  Google Scholar 

  206. Raviraj, V. et al. Dormant but migratory tumour cells in desmoplastic stroma of invasive ductal carcinomas. Clin. Exp. Metastasis 29, 273–292 (2012).

    PubMed  Google Scholar 

  207. Lee, J. et al. The metastasis suppressor CD82/KAI1 inhibits fibronectin adhesion-induced epithelial-to-mesenchymal transition in prostate cancer cells by repressing the associated integrin signaling. Oncotarget 8, 1641–1654 (2017).

    PubMed  Google Scholar 

  208. Jin, H. et al. Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics 9, 265–278 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Fang, J. et al. A potent immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice. Int. J. Cancer 138, 1013–1023 (2016).

    CAS  PubMed  Google Scholar 

  210. Loeffler, I., Liebisch, M. & Wolf, G. Collagen VIII influences epithelial phenotypic changes in experimental diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 303, F733–745 (2012).

    CAS  Google Scholar 

  211. Terashima, M. et al. Synergistic antitumor effects of S-1 with eribulin in vitro and in vivo for triple-negative breast cancer cell lines. Springerplus 3, 417 (2014).

    PubMed  PubMed Central  Google Scholar 

  212. Chiu, L. Y. et al. The ERK-ZEB1 pathway mediates epithelial-mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids. Oncogene 36, 242–253 (2017).

    CAS  PubMed  Google Scholar 

  213. Aparicio, L. A. et al. Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells. BMC Cancer 14, 507 (2014).

    PubMed  PubMed Central  Google Scholar 

  214. Demetri, G. et al. Activity of eribulin in patients with advanced liposarcoma demonstrated in a subgroup analysis from a randomized phase III study of eribulin versus dacarbazine. J. Clin. Oncol. 35, 3433–3439 (2017).

    CAS  PubMed  Google Scholar 

  215. Twelves, C. et al. Efficacy of eribulin in women with metastatic breast cancer: a pooled analysis of two phase 3 studies. Breast Cancer Res. Treat. 148, 553–561 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Ishay-Ronen, D. et al. Gain fat-lose metastasis: converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell 35, 17–32.e6 (2019).

    CAS  PubMed  Google Scholar 

  217. Gupta, P. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Sánchez Tilló, E. et al. The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma. Cell Death Differ. 21, 247–257 (2014).

    PubMed  Google Scholar 

  219. Qu, C. et al. Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol. Cell Biochem. 386, 63–71 (2014).

    CAS  PubMed  Google Scholar 

  220. Jia, D. et al. OVOL guides the epithelial-hybrid-mesenchymal transition. Oncotarget 6, 15436–15448 (2015).

    PubMed  PubMed Central  Google Scholar 

  221. Cursons, J. et al. Stimulus-dependent differences in signalling regulate epithelial-mesenchymal plasticity and change the effects of drugs in breast cancer cell lines. Cell Commun Signal 13, 26 (2015).

    PubMed  PubMed Central  Google Scholar 

  222. Twelves, C. et al. "New" metastases are associated with a poorer prognosis than growth of pre-existing metastases in patients with metastatic breast cancer treated with chemotherapy. Breast Cancer Res. 17, 150 (2015).

    PubMed  PubMed Central  Google Scholar 

  223. López-Novoa, J. M. & Nieto, M. A. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol. Med. 1, 303–314 (2009).

    PubMed  PubMed Central  Google Scholar 

  224. Latil, M. et al. Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition. Cell Stem Cell 20, 191–204.e5 (2017).

    CAS  PubMed  Google Scholar 

  225. Chen, Y. et al. Dual reporter genetic mouse models of pancreatic cancer identify an epithelial-to-mesenchymal transition-independent metastasis program. EMBO Mol. Med. 10 https://doi.org/10.15252/emmm.201809085 (2018).

  226. Ye, X. et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525, 256–260 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Aiello, N. M. et al. EMT subtype influences epithelial plasticity and mode of cell migration. Dev. Cell 45, 681–695.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Tsuji, T. et al. Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res. 68, 10377–10386 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Neelakantan, D. et al. EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nat. Commun. 8, 15773 (2017).

    PubMed  PubMed Central  Google Scholar 

  230. Neelakantan, D., Drasin, D. J. & Ford, H. L. Intratumoral heterogeneity: clonal cooperation in epithelial-to-mesenchymal transition and metastasis. Cell Adh. Migr. 9, 265–276 (2015).

    CAS  PubMed  Google Scholar 

  231. Zhou, H., Neelakantan, D. & Ford, H. L. Clonal cooperativity in heterogenous cancers. Semin. Cell Dev. Biol. 64, 79–89 (2017).

    PubMed  Google Scholar 

  232. Cheung, K. J. et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc. Natl Acad. Sci. USA 113, E854–863 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Maddipati, R. & Stanger, B. Z. Pancreatic cancer metastases harbor evidence of polyclonality. Cancer Discov. 5, 1086–1097 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Liu, L., Ye, Y. & Zhu, X. MMP-9 secreted by tumor associated macrophages promoted gastric cancer metastasis through a PI3K/AKT/Snail pathway. Biomed. Pharmacother. 117, 109096 (2019).

    PubMed  Google Scholar 

  235. Zou, J. et al. Secreted TGF-β-induced protein promotes aggressive progression in bladder cancer cells. Cancer Manag. Res. 11, 6995–7006 (2019).

    PubMed  PubMed Central  Google Scholar 

  236. Hirai, M. et al. Regulation of PD-L1 expression in a high-grade invasive human oral squamous cell carcinoma microenvironment. Int. J. Oncol. 50, 41–48 (2017).

    CAS  PubMed  Google Scholar 

  237. Yao, J. et al. Altered expression and splicing of ESRP1 in malignant melanoma correlates with epithelial-mesenchymal status and tumor-associated immune cytolytic activity. Cancer Immunol. Res. 4, 552–561 (2016).

    CAS  PubMed  Google Scholar 

  238. Kudo-Saito, C., Shirako, H., Takeuchi, T. & Kawakami, Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15, 195–206 (2009).

    CAS  PubMed  Google Scholar 

  239. Chen, L. et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun. 5, 5241 (2014).

    CAS  PubMed  Google Scholar 

  240. Thar Min, A. K. et al. Epithelial-mesenchymal transition-converted tumor cells can induce T-cell apoptosis through upregulation of programmed death ligand 1 expression in esophageal squamous cell carcinoma. Cancer Med. 7, 3321–3330 (2018).

    CAS  PubMed Central  Google Scholar 

  241. Chen, L. et al. PD-L1 expression promotes epithelial to mesenchymal transition in human esophageal cancer. Cell Physiol. Biochem. 42, 2267–2280 (2017).

    CAS  PubMed  Google Scholar 

  242. Qiu, X. et al. PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. Biochim. Biophys. Acta 1864, 1754–1769 (2018).

    CAS  Google Scholar 

  243. Fei, Z. et al. PD-L1 induces epithelial-mesenchymal transition in nasopharyngeal carcinoma cells through activation of the PI3K/AKT pathway. Oncol. Res. 27, 801–807 (2019).

    PubMed  PubMed Central  Google Scholar 

  244. Imai, D. et al. IFN-γ promotes epithelial-mesenchymal transition and the expression of PD-L1 in pancreatic cancer. J. Surg. Res. 240, 115–123 (2019).

    CAS  PubMed  Google Scholar 

  245. Ren, T. et al. Osteosarcoma cell intrinsic PD-L2 signals promote invasion and metastasis via the RhoA-ROCK-LIMK2 and autophagy pathways. Cell Death Dis. 10, 261 (2019).

    PubMed  PubMed Central  Google Scholar 

  246. Kim, S. et al. PD-L1 expression is associated with epithelial-to-mesenchymal transition in adenocarcinoma of the lung. Hum. Pathol. 58, 7–14 (2016).

    CAS  PubMed  Google Scholar 

  247. Lou, Y. et al. Epithelial-mesenchymal transition is associated with a distinct tumor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clin. Cancer Res. 22, 3630–3642 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Critelli, R. et al. Microenvironment inflammatory infiltrate drives growth speed and outcome of hepatocellular carcinoma: a prospective clinical study. Cell Death Dis. 8, e3017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. McNiel, E. A. & Tsichlis, P. N. Analyses of publicly available genomics resources define FGF-2-expressing bladder carcinomas as EMT-prone, proliferative tumors with low mutation rates and high expression of CTLA-4, PD-1 and PD-L1. Signal Transduct. Target Ther. 2, 16045 (2017).

    PubMed  PubMed Central  Google Scholar 

  250. Shrestha, R. et al. Monitoring immune checkpoint regulators as predictive biomarkers in hepatocellular carcinoma. Front. Oncol. 8, 269 (2018).

    PubMed  PubMed Central  Google Scholar 

  251. Shimoji, M. et al. Clinical and pathologic features of lung cancer expressing programmed cell death ligand 1 (PD-L1). Lung Cancer 98, 69–75 (2016).

    PubMed  Google Scholar 

  252. Funaki, S. et al. The prognostic impact of programmed cell death 1 and its ligand and the correlation with epithelial-mesenchymal transition in thymic carcinoma. Cancer Med. 8, 216–226 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Wang, Y. et al. EGFR activation induced Snail-dependent EMT and myc-dependent PD-L1 in human salivary adenoid cystic carcinoma cells. Cell Cycle 17, 1457–1470 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Wang, L. et al. EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat. Commun. 9, 3503 (2018).

    PubMed  PubMed Central  Google Scholar 

  255. Xia, Y., Shen, S. & Verma, I. M. NF-κB, an active player in human cancers. Cancer Immunol. Res. 2, 823–830 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Yao-Borengasser, A. et al. Adipocyte hypoxia promotes epithelial-mesenchymal transition-related gene expression and estrogen receptor-negative phenotype in breast cancer cells. Oncol. Rep. 33, 2689–2694 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Peng, D. H. et al. ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis. Oncogene 36, 1925–1938 (2017).

    CAS  PubMed  Google Scholar 

  258. Ingthorsson, S., Briem, E., Bergthorsson, J. T. & Gudjonsson, T. Epithelial plasticity during human breast morphogenesis and cancer progression. J. Mammary Gland. Biol. Neoplasia 21, 139–148 (2016).

    PubMed  PubMed Central  Google Scholar 

  259. Fantozzi, A. et al. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation. Cancer Res. 74, 1566–1575 (2014).

    CAS  PubMed  Google Scholar 

  260. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    CAS  PubMed  Google Scholar 

  261. Yin, H. & Glass, J. The phenotypic radiation resistance of CD44+/CD24-or low breast cancer cells is mediated through the enhanced activation of ATM signaling. PLOS ONE 6, e24080 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Chen, W. J. et al. Multidrug resistance in breast cancer cells during epithelial-mesenchymal transition is modulated by breast cancer resistant protein. Chin. J. Cancer 29, 151–157 (2010).

    PubMed  Google Scholar 

  263. Li, W. et al. Overexpression of Snail accelerates adriamycin induction of multidrug resistance in breast cancer cells. Asian Pac. J. Cancer Prev. 12, 2575–2580 (2011).

    PubMed  Google Scholar 

  264. Saxena, M., Stephens, M. A., Pathak, H. & Rangarajan, A. Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis. 2, e179 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Sun, L. et al. Novel cancer stem cell targets during epithelial to mesenchymal transition in PTEN-deficient trastuzumab-resistant breast cancer. Oncotarget 7, 51408–51422 (2016).

    PubMed  PubMed Central  Google Scholar 

  266. Bendell, J. C. et al. Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer 97, 2972–2977 (2003).

    PubMed  Google Scholar 

  267. Gilles, C. et al. Vimentin expression in cervical carcinomas: association with invasive and migratory potential. J. Pathol. 180, 175–180 (1996).

    CAS  PubMed  Google Scholar 

  268. Stark, T. W. et al. Predictive value of epithelial-mesenchymal-transition (EMT) signature and PARP-1 in prostate cancer radioresistance. Prostate 77, 1583–1591 (2017).

    CAS  PubMed  Google Scholar 

  269. Creighton, C. J., Chang, J. C. & Rosen, J. M. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J. Mammary Gland. Biol. Neoplasia 15, 253–260 (2010).

    PubMed  Google Scholar 

  270. Mak, M. P. et al. A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin. Cancer Res. 22, 609–620 (2016).

    CAS  PubMed  Google Scholar 

  271. Rokavec, M., Kaller, M., Horst, D. & Hermeking, H. Pan-cancer EMT-signature identifies RBM47 down-regulation during colorectal cancer progression. Sci. Rep. 7, 4687 (2017).

    PubMed  PubMed Central  Google Scholar 

  272. Payne, R. E. et al. Viable circulating tumour cell detection using multiplex RNA in situ hybridisation predicts progression-free survival in metastatic breast cancer patients. Br. J. Cancer 106, 1790–1797 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Decalf, J., Albert, M. L. & Ziai, J. New tools for pathology: a user’s review of a highly multiplexed method for in situ analysis of protein and RNA expression in tissue. J. Pathol. 247, 650–661 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge research support in the form of funding from the Australian Government Department of Health (Australian Prostate Cancer Centre – Queensland), Movember Foundation and the Prostate Cancer Foundation of Australia through a Movember Revolutionary Team Award (E.D.W.), Princess Alexandra Research Foundation (E.D.W, E.W.T.), National Breast Cancer Foundation (E.W.T.), the Australia India Council (E.W.T.), NIH (5R01CA205418; D.G.) and The Neuberger Berman Foundation Lung Cancer Research Center at Weill Cornell Medicine (D.G.). The Translational Research Institute receives funding from the Australian Government.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Erik W. Thompson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, E.D., Gao, D., Redfern, A. et al. Controversies around epithelial–mesenchymal plasticity in cancer metastasis. Nat Rev Cancer 19, 716–732 (2019). https://doi.org/10.1038/s41568-019-0213-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-019-0213-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer