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Active cell divisions generate fourfold 
orientationally ordered phase in living tissue

Dillon J. Cislo1,2  , Fengshuo Yang1,3, Haodong Qin1,4, Anastasios Pavlopoulos    5, 
Mark J. Bowick    1,6 & Sebastian J. Streichan    1 

Morphogenesis, the process through which genes generate form, 
establishes tissue-scale order as a template for constructing the complex 
shapes of the body plan. The extensive growth required to build these 
ordered substrates is fuelled by cell proliferation, which, naively, should 
destroy order. Understanding how active morphogenetic mechanisms 
couple cellular and mechanical processes to generate order—rather than 
annihilate it—remains an outstanding question in animal development. 
We show that cell divisions are the primary drivers of tissue flow, leading 
to a fourfold orientationally ordered phase. Waves of anisotropic cell 
proliferation propagate across the embryo with precise patterning. Defects 
introduced into the nascent lattice by cell divisions are moved out of the 
tissue bulk towards the boundary by subsequent divisions. Specific cell 
proliferation rates and orientations enable cell divisions to organize rather 
than fluidize the tissue. We observe this using live imaging and tissue 
cartography to analyse the dynamics of fourfold tissue ordering in the trunk 
segmental ectoderm of the crustacean Parhyale hawaiensis beginning 72 h 
after egg lay. The result is a robust, active mechanism for generating global 
orientational order in a non-equilibrium system that sets the stage for the 
subsequent development of shape and form.

Ordered cellular geometries in developing tissues serve as patterned 
substrates from which complex arrangements of body parts can be 
built. The crucial organizing role that order plays in morphogenesis is 
particularly apparent in direct developers. These animals assemble a 
complete, miniature version of the adult body during embryogenesis1. 
The limbs and organs comprising the adult form are arranged according 
to specific body plans that ensure proper biomechanical functional-
ity2,3. Body parts develop with ordered placements and are aligned and 
oriented relative to distinct principal body axes3. To reliably generate 
the correct arrangements of limbs and organs, direct developers cre-
ate organizational templates from ordered regions of tissue, akin to a 
coordinate system spanning the entire body.

Such templates must be ordered to delineate the body plan, but 
also retain sufficient fluidity to facilitate the large deformations nec-
essary during development. Orientational order, an intermediate 
state between solid and liquid matter, has been previously studied in 
non-living, thermally equilibrated systems4–8. More recently, orien-
tational order has been demonstrated in the late stages of develop-
ment, where organs use planar polarized signals to arrange cells into 
an ordered phase in the absence of proliferation9–12. In contrast, the 
initial structuring of the body plan during early embryonic stages 
occurs via the sequential outgrowth of segments and is fuelled by 
cell proliferation1. Generically, cell proliferation should give rise to 
fluid-like rearrangements that mix cells and prevent the initially fluid 
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(Methods). We found that the number of cells increases exponentially 
with a typical doubling time of ~10 h (Fig. 1f). Next, we constructed 
a complex order parameter to quantify the relative orientations of 
neighbouring cells (Fig. 2a). The cell positions were taken to be the 
centres of mass of the nuclei. Instantaneous cell–cell connectivity was 
approximated by Voronoi tessellation (Supplementary Fig. 3). The 
order parameter assigns a pair of quantitative measures, magnitude 
and phase, to each cell indicating the extent to which neighbouring 
cells are coherently positioned according to a specific n-fold lattice 
structure and the local orientation of the ordered neighbourhood, 
respectively (Supplementary Fig. 4). Explicitly, the n-fold order param-
eter of cell j is given by

ψn( j) =
1

∑kℓ2jk
∑

k∈𝒩𝒩𝒩 j)
ℓ2jkeinθjk , (1)

where the sum runs over all the nearest neighbours k of cell j, that is, 
k ∈ 𝒩𝒩(j); θjk is the angle formed by the separation vector between cells 
j and k and the horizontal axis in two dimensions; and ℓjk denotes the 
length of the Voronoi edge shared by cells j and k. The magnitude of 
the order parameter ranges between 0 (no n-fold order) and 1 (maxi-
mum n-fold order). For n = 4, that is, fourfold order parameters, the 
magnitude of the order parameter peaks when all the neighbours of a 
cell are organized in a rectangular fashion (Fig. 2b,c). Our analysis 
reveals that the tissue initially exhibits no fourfold order (Fig. 2d,e). 
Gradually, as the number of cells grows, the tissue adopts an increas-
ingly fourfold ordered state, which peaks in magnitude at around 82.5 h 
AEL (Fig. 2d,f).

We also calculated the two-point correlation functions of the order 
parameter, namely, Cn(r) =< ψn(r)ψ∗

n(0) > (n = 4, 6), which measure 
the agreement of the magnitude and phase of local order between cells 

tissue from ever achieving an ordered state13–15. Orientationally ordered 
phases occupy only small fractions of their respective phase spaces 
in thermally equilibrated systems16–20. Thus, it remains unclear how 
non-equilibrium mechanisms in living systems can generate the req-
uisite order to specify the body plan in the presence of cell divisions.

Here we used Parhyale hawaiensis, an emerging model system of 
direct limb morphogenesis21,22, to study the interplay of growth and 
order. Parhyale sequentially implements its body plan via extensive 
cell proliferation23. Before appendage outgrowth, the ectoderm forms 
a grid of locally ordered cells23,24 (Fig. 1a,c–e), a feature shared among 
malacostracans22. The rows of this grid correspond to segments of the 
adult body23,24. Limb buds form at specific locations in the grid and 
give rise to numerous functionally specific appendages21. Importantly, 
limb orientation, in terms of the dorsal–ventral (D–V) and anterior–
posterior (A–P) axes, can be traced back to the local arrangement of 
precursor cells at the grid stage23,25.

We performed the in toto live imaging of four Parhyale embryos 
using multiview light-sheet microscopy26 over a 35 h window beginning 
three days after egg lay (AEL) (Fig. 1a) (Methods provides more details 
on data curation). During this period, the ectoderm is a monolayer23 and 
can be well approximated as a curved two-dimensional (2D) surface. 
Using tissue cartography27,28, the surface of interest corresponding to 
the ectoderm was dynamically extracted at each time point (Methods, 
Supplementary Fig. 1 and Supplementary Video 1). This curved surface 
was then conformally mapped into the plane so that the relative cell 
orientations, and therefore the orientational order, could be faithfully 
quantified from the planar data (Fig. 1b–e and Supplementary Fig. 2). 
Three-dimensional (3D) and 2D dynamic visualizations of the growth 
process are shown in Supplementary Videos 2–4.

Working in the 2D conformal parameterization space, we imple-
mented automated image segmentation routines to detect cells 
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Fig. 1 | Conformal tissue cartography captures cell and tissue geometry in 
vivo. a, Multiview light-sheet microscopy allows for the non-invasive 3D imaging 
of growing P. hawaiensis embryos. The symbols A and P in the inset denote the 
anterior and posterior directions, whereas D and V denote the dorsal and ventral 
directions, respectively. b, Conformal tissue cartography faithfully captures the 
relative orientations of cells and streamlines the data analysis via dimensional 
reduction. Here θ3D denotes the angle between two curves on the 3D surface 

(shown in purple), whereas θ2D denotes the angle between the image of the 
same two curves in the 2D domain of parameterization. c–e, Trunk ectodermal 
germband pulled back to the plane by tissue cartography at 72.5 h AEL (c), 86.3 h 
AEL (d) and 91.9 h AEL (e). f, Number of cells in a tracked region within the tissue, 
comprising four parasegments in a single embryo, shown on a log scale. The 
dashed line is an exponential fit to the cell-doubling time τ. The shaded region 
highlights the convergent extension phase of growth (Fig. 4).

http://www.nature.com/naturephysics


Nature Physics | Volume 19 | August 2023 | 1201–1210 1203

Article https://doi.org/10.1038/s41567-023-02025-3

as a function of their separation (Fig. 2g and Supplementary Figs. 5a 
and 6a,b). At early times, orientational order is short ranged, restricted 
to less than a cell length. In contrast, at later times, when the global 

fourfold order parameter peaks, the orientational order is quasi-long 
ranged, with correlations that decay algebraically across the entire 
surface (Fig. 2g and Supplementary Fig. 6a). Therefore, strongly 
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Fig. 2 | Dynamics of a fourfold orientationally ordered phase in living tissue. 
a, Schematic of the discrete fourfold complex orientational order parameter ψ4. 
Here x⃗ j  and x⃗ k  denote the centroids of cells j and k, respectively; θjk denotes the 
angle between the horizontal axis and separation vector x⃗ k −x⃗ j; and ℓjk denotes 
the length of the Voronoi edge shared by cells j and k. The sum runs over all the 
cells k in the neighbourhood of cell j, that is, k ∈ 𝒩𝒩𝒩j). b,c, Specific examples of 
the construction of a single-cell order parameter. The value shown in the inset is 
the magnitude of the order parameter of the seed cell highlighted by an orange 
boundary. The cell colour and arrows indicate the magnitude and phase of the 
single-cell order parameters, respectively (colour bar at the bottom right). The 
colour and thickness of the bonds between the seed cell and its neighbours 
indicate the relative weight with which each bond contributes to the sum 
defining the order parameter (colour bar at the left): a disordered cell (b); a 
highly ordered cell (c). d, Absolute value of the mean fourfold and sixfold 
orientational order parameters over the whole embryo. The shaded contours 
show the standard errors. Data are aggregated from four embryos. The dotted 
lines indicate the measured values from nuclear movies, whereas the markers 
indicate values measured from the snapshots of membrane marker movies 

(Methods). The error bars on the snapshot markers denote standard errors.  
The shaded region highlights the convergent extension phase of growth (Fig. 4).  
e,f, Absolute value of a single-cell fourfold orientational order parameter in the 
left ectodermal compartment at 72.5 h AEL (e) and 85.8 h AEL (f). The cyan 
boundaries demarcate the ventral midline cells and the magenta lines delineate 
the parasegment identities. g, Two-point correlator of the fourfold orientational 
order parameter C4𝒩r) ≡< ψ4𝒩r)ψ∗

4𝒩0) >. The vertical line shows the largest 
lateral dimension of the system. The measured values are extracted from a single 
embryo. The orientational correlations for a second embryo are shown in 
Supplementary Fig. 6. Both black dashed lines display algebraic decay r−1/4 and are 
intended to be a guide for the eye. h, Table enumerating the types of translational 
and orientational correlations associated with the different material phases. The 
translational correlations are measured using the pair correlation function g(r). 
Note that unlike a crystal, an orientationally ordered phase is characterized by a 
gas of defects. The image in the inset shows the edge defects introduced into 
rows of cells by division during a time when the germband is fourfold ordered. 
The cyan lines are a visual guide to distinguish the rows of cells and terminate 
either on the region boundary or at a left/right defect.
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ordered local cell neighbourhoods are coherently ordered—in both 
magnitude and phase—across the whole embryo. No substantial sixfold 
order was detected at any time during this stage (Fig. 2d and Supple-
mentary Figs. 5a and 6b). In particular, although the global sixfold order 
parameter transiently rises to a modest |<ψ6>| ≈ 0.3 (for comparison, 
the sixfold order parameter observed in a hexagonally ordered arrange-
ment of hair cells in the mammalian inner ear peaks at ≳0.7 (ref. 12)), 
the sixfold order correlations always decay exponentially. Exponen-
tially decaying correlation functions categorically prohibit the possibil-
ity of a hexatically ordered phase16. Next, we tested if the ectodermal 
grid exhibits positional order using the pair correlation function g(Δr), 
that is, the high-resolution histogram of distances between pairs of 
cells16,20. Isotropic correlations g(r) decay exponentially (Supplemen-
tary Figs. 5b and 6c) and the cell spacing is not periodic along any single 
axis (Supplementary Fig. 5c,d). Thus, the tissue exhibits neither posi-
tional nor smectic order. More details about the construction of the 
various correlation functions, including the validation of results against 
synthetic datasets (Supplementary Figs. 7 and 8 and Supplementary 
Table 1) and a discussion of finite size effects (Supplementary Fig. 9), 
can be found in Methods.

This lack of periodic cell spacing can be partly explained by the 
presence of edge defects in rows of cells. Edge defects are locations 
where a lattice row freely terminates in the interior, for example, 
three rows become two. In elasticity theory, such defects are called 
‘dislocations’ and are well known to disrupt translational order, but 
preserve orientational order29. In the Parhyale germband, these 
defects are disordered, reminiscent of the defect gases characteris-
tic of orientationally ordered phases (Fig. 2h). Cell divisions are the 
primary mechanism mediating both defect generation and subse-
quent defect dynamics within the tissue (Supplementary Video 5). 
Although defects are generally isolated during the time the tissue 
peaks in orientational order, many defects can be associated with 
one another by a row of ordered cells with a defect on the left and 
right sides, respectively (Fig. 2h). Together, these results show that 
the tissue achieves a true orientationally ordered phase extending 
over the entire trunk ectodermal germband.

We performed single-cell tracking to reconstruct the flow fields 
that organize the ectoderm during the rise of fourfold order. A paraseg-
ment precursor row (PSPR) is the fundamental supercellular unit of 
morphogenesis in the trunk ectodermal germband during this phase 
of growth23,24. A PSPR is a single row of cells, oriented perpendicular 

to the A–P axis, which can be directly associated with particular seg-
ments of the adult body. As a unit, PSPRs are sequentially appended 
to the grid. Cells are recruited from a pool of unorganized ectoderm 
at the posterior pole of the embryo and assembled into nascent rows 
so that each newly constructed PSPR lies immediately posterior to the 
PSPR that preceded it (Fig. 3a). Despite being arranged as a row and, 
in general, not containing any edge defects (Supplementary Video 5), 
newly built PSPRs do not yet exhibit fourfold order (Fig. 2d and Sup-
plementary Fig. 10).

Once a PSPR is assembled, its constituent cells undergo two rounds 
of highly choreographed cell divisions. Within each parasegment, 
mitotic waves are initiated at the ventral midline and spread outwards 
towards the dorsal regions of the embryo (Fig. 3b and Supplementary 
Videos 6 and 7). The timing of these intrasegment waves is stereotypic 
among all the segments (Fig. 3f and Supplementary Fig. 11c); since 
PSPRs are sequentially constructed, their onset is staggered between 
adjacent PSPRs (Fig. 3d,e and Supplementary Fig. 11a,b). This choreog-
raphy leads to two orthogonal phase waves of cell divisions with distinct 
wave velocities: a fast wave within each PSPR spreading ventral to dorsal 
and a slower one across PSPRs that moves anterior to posterior (Fig. 3c).  
After completing these two mitotic waves, each PSPR subsequently 
undergoes rapid differential cleavage in localized regions adjacent 
to the ventral midline (Fig. 3b). Cells divide faster during differential 
cleavage than during mitotic waves (Supplementary Fig. 12). Together, 
these results indicate that PSPRs behave as weakly coupled, independ-
ent units running the same modular proliferation program. In other 
words, cells in different PSPRs begin to divide at different times, but 
the relative timing of division waves is shared among the segments.

The orientations of divisions comprising the mitotic waves are 
tightly distributed about the A–P axis (Fig. 3g). This coherence of cell 
division axes appears to be actively maintained. We frequently found 
that condensed nuclei with the wrong orientation would rapidly rotate 
to align with the global division axis (Fig. 3h and Supplementary Video 8).  
In fact, 7.4% of the 770 tracked division events underwent a reorienta-
tion of more than 45° in the five minutes before division. This patterning 
of oriented and wave-like timed cell divisions ensures that the defects 
inserted into the lattice by cell division are effectively ferried out of the 
tissue towards the boundary (Fig. 3i). Explicitly, as the mitotic waves 
gradually insert new rows into the bulk of the grid, the incomplete rows 
manifest defects at their left and right edges (Fig. 2h). These defects 
are pushed out towards the dorsal regions of the tissue, leaving behind 

Fig. 3 | Waves of actively oriented divisions generate fourfold order.  
a,b, Schematic of parasegment formation and cell proliferation in the trunk 
ectodermal germband. In a (left), A and P denote the anterior and posterior 
directions, whereas D and V denote the dorsal and ventral directions, respectively. 
The head ectoderm and trunk ectoderm are demarcated and the ventral midline is 
highlighted, too. Also, a (right) shows the spatial distribution of cell populations 
delineated by the number of divisions after parasegment formation once 
parasegments are assembled from the pool of unorganized ectoderm at the 
posterior pole. The cyan lines demarcate the parasegment boundaries. 
Proliferation of a single parasegment over the course of 22.4 h (b). Initially 
unorganized ectoderm at 69.5 h AEL coalesce into a PSPR by 71.6 h AEL. Cells 
comprising the PSPR then divide along the A–P axis as part of a mitotic wave, 
shown partially completed at 73.3 h AEL, which originates at the ventral midline 
and spreads outwards until there are two complete rows of cells (79.0 h AEL), 
denoted as ‘a/b’ and ‘c/d’. Each of these two rows then undergoes a second mitotic 
wave, shown partially complete at 85.6 h AEL, until there are four complete rows, 
denoted as ‘a’, ‘b’, ‘c’ and ‘d’, reflecting the origin of each row from its predecessor at 
the two-row stage. After the second mitotic wave, rapid differential cleavage sets 
in near the ventral midline, in which cells divide isotropically (91.9 h AEL). The 
insets (right) highlight the behaviour of a single cell and its progeny throughout 
the mitotic waves. c, Snapshot of elapsed time since division reveals two 
orthogonal phase waves within and across parasegments. The cyan lines 
demarcate the parasegment boundaries. d–f, Location of mitotic wave division 
events over time for a single embryo. The shapes indicate the parasegment within 

which a division occurs. The indicated lines are linear fits to all the division events 
associated to a particular mitotic wave. The linear fits of divisions within a single 
parasegment on either side of the ventral midline in e are joined by a vertical line 
as a guide for the eye. Location of each division along the A–P axis (d). The speed 
of mitotic wave 1 is 7.5 ± 0.3 μm h–1. The speed of mitotic wave 2 (AB) is 
6.9 ± 0.9 μm h–1. The speed of mitotic wave 2 (CD) is 6.1 ± 0.9 μm h–1. Also, e and f 
show the location of each division along the D–V axis. The division times in f have 
been normalized to the occurrence of the first division event associated with a 
particular wave in a specific parasegment. The speed of mitotic wave 1 is 
19.2 ± 2.1 μm h–1. The speed of mitotic wave 2 (AB) is 13.9 ± 1.2 μm h–1. The speed of 
mitotic wave 2 (CD) is 13.1 ± 0.9 μm h–1. The analysis of division locations and 
timings for a second embryo is shown in Supplementary Fig. 11. g, Orientation of 
cell division axes relative to the A–P axis. The histogram includes 483 mitotic wave 
divisions and 112 differential cleavage divisions from two embryos. The indicated 
curves are von Mises distributions fit to histogram counts. The circular mean 
division angle and angular deviation for the mitotic waves are θMW = 0 rad and 
sMW = 0.44. The circular mean division angle and angular deviation for the 
differential cleavage are θDC = 0.04 rad and sMW = 1.29. h, Example of active 
reorientation of a nucleus immediately before cell division. Here θdiv denotes the 
angle between the A–P axis (magenta lines) and the presumptive division axis 
(cyan lines). The cyan line in the final image indicates the actual division axis.  
i, Schematic of division-induced defect climb along parasegments between 82.3 
and 84.5 h AEL. The magenta lines indicate the cell-row identity and are intended 
as guides for the eye to highlight the time evolution of the defect.
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an intact fourfold ordered grid. This type of defect motion is known 
as ‘defect climb’. It can be contrasted against ‘defect glide’, another 
type of defect motion, where defects would instead jump between 
adjacent PSPRs. In non-living systems, glide generally dominates climb 
since gliding only requires simple updates to the connectivity of near-
est neighbours, whereas climb requires the creation of vacancies or 
interstitial defects30. Defect climb in non-living systems typically only 
becomes the dominant mode of defect motion at extremely high tem-
peratures31. Here the presence of cell divisions excites defect climb at 
room temperature, such that defects, which would otherwise disorder 
the lattice, are healed by subsequent divisions.

Next, we investigated how the division choreography dynami-
cally shapes the ectoderm at the tissue scale. For the purposes of this 

analysis, we focused on a subset of six PSPRs. We determined that 
growth proceeds in two stages (Fig. 4a). In the first stage, mitotic waves 
extend the germband by inserting new rows without changing the 
average cell density (Fig. 4b,c and Supplementary Fig. 13). The tissue 
elongates along the A–P axis and increases in the total area, but its width 
remains approximately constant. In the second stage, the tissue under-
goes convergent extension. Its width is sharply pinched, but its length 
continues to increase in such a way that the total tissue area is held 
approximately fixed. Since the rate of cell division remains constant 
throughout both stages (Fig. 1f), the average cell density necessarily 
increases during convergent extension.

These two stages also feature markedly different dynamics of 
the global order parameter (Fig. 2d). During the first stage, when the 
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Fig. 4 | Active cell divisions dictate tissue velocities during germband 
extension. a, Schematic of the two stages of tissue-scale growth observed in 
the germband. The dashed black arrows indicate the chronological ordering 
of growth stages. The solid black arrows indicate the net motion of the tissue 
boundary, whereas the magenta arrows indicate the local tissue motion. The 
green shading in a–d demarcates the convergent extension phase of growth. 
b,c, Tissue-scale-observable fields in the germband of a single embryo. Tissue 
cartography ensures that the 3D geometry is properly handled. The shading 
corresponds to the two observed stages of growth. Mean cell density and total 
tissue area (b). The blue-shaded region shows the standard deviation. Tissue 
length measured along the A–P axis and the tissue width measured along 

the D–V axis (c). d, Mean residual value between the measured cell velocities 
extracted from a single embryo and the cell velocities predicted by the active 
hydrodynamic model. e, Magnitude of the velocity of the mean cell division event 
(190 division events extracted from a single embryo). The arrows showing the 
orientation are scaled by the norm of the velocity. f, Schematic of the flow field 
induced by a single division event. The magenta arrows indicate the local tissue 
flow. g–i, Cell velocities measured by single-cell tracking at three representative 
time points (76.2 h AEL (g), 82.4 h AEL (h), 91.1 h AEL (i)). j–l, Predicted cell 
velocities at the same times as g–i. The cyan lines in g–l indicate the cell 
velocities. m–o, Single-cell velocity residuals for the measured and calculated 
velocity fields shown in g–i and j–l, respectively.
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large-scale motion of the tissue appears to be dominated by mitotic 
waves, the global order parameter consistently increases. In the second 
stage, where the tissue experiences a reduction in width that is not 
explained by the mitotic waves alone, the global order parameter is 
initially static, but slowly falls off.

Having separately elucidated the kinetics of cell proliferation 
and the time course of tissue geometry, our next goal was to explicitly 
connect local cell behaviours with global tissue shape and flow. We 
developed a hydrodynamic model that directly links coarse-grained 
tissue flow to bulk contributions from oriented cell divisions via an 
active source term32–36:

ν1∇2v + ν2 ∇ (∇ ⋅ v) = −∇ ⋅ σσσa ≡ −Fa, (2)

where v denotes the tissue velocities; σa are the active stresses; Fa are 
the corresponding active forces; ν1 = τRμ is the effective shear viscosity; 
ν2 = τR(μ + λ) is the effective bulk viscosity; τR is a timescale correspond-
ing to mechanical relaxation due to growth/tissue remodelling; and μ 
and λ are the usual Lamé parameters (Methods and Supplementary 
Text). For simplicity, we assume that cell divisions are the only source 
of active stresses. During division, the mitotic spindle within cells 
generates extensile forces akin to a force dipole14,37. These division 
events push on nearby cells, deforming the dividing cell’s neighbours 
and generating local plastic strain. The viscoelastic relaxation of this 
instantaneous strain leads to flow in the surrounding tissue (Fig. 4f). 
In this way, many division events can combine to create large-scale 
collective motion. We investigated the extent to which the integrated 
deformations induced by divisions could collectively account for the 
observed global tissue flow. We first deduced the average plastic defor-
mation induced by a single cell division by rotating 190 cell division 
events into a common frame (Fig. 4e and Supplementary Figs. 14 and 15).  
Informed by the features of this average flow field, individual divi-
sion events were modelled as circular inclusions, that is, finite regions 
within which the tissue undergoes a permanent plastic strain38, with 
an orientation chosen to align with each measured division axis. We 
then solved our model using the finite element method with Dirichlet 
boundary conditions to predict the tissue flow from the observed cell 
divisions (Supplementary Fig. 16).

We compared the predicted tissue flow with velocity fields quanti-
fied from individual cell tracking. Validations were performed against 
velocity fields extracted from a single embryo. Measured tissue flow 
fields were mostly harmonic, irrotational and divergence free, except 
at cell divisions, where the divergence, curl and Laplacian of the flow 

fields spiked (Fig. 4g–i and Supplementary Fig. 17). Visually, the flow 
fields predicted from our model appear strikingly similar (Fig. 4j–l). 
The velocity residual quantitatively confirms that our simple model 
accurately predicts both direction and magnitude of the observed 
tissue flow (Fig. 4m–o) (Methods). During the first phase of growth, 
velocity residuals are typically below 10% (Fig. 4d and Supplementary 
Fig. 18). This suggests that about 90% of the flow can be accounted for 
in terms of cell divisions as the dominant bulk contribution. Velocity 
residuals subsequently increase moderately during convergent exten-
sion, reaching a typical level of around 20%. This suggests that divisions 
are still the main driver, but other mechanisms, currently not accounted 
for by the model, provide small but measurable adjustments.

Finally, we directly investigated the role of oriented divisions in 
mediating both cell- and tissue-scale orientational order by simulating 
division waves using a simple vertex model (Supplementary Text). In 
line with the observations of actual cells in the tissue (Fig. 5a), simulated 
cells were assigned a target shape index of p0 = P/√A = 4, where P is 
the cell perimeter and A is the cell area, that is, the preferred shape 
index of a perfect square. The tissue was grown by selecting one cell at 
a time to divide along an axis drawn from a circular von Mises distribu-
tion with variable concentration k (Fig. 5f). The results of a typical 
division wave simulation are shown in Fig. 5b,c. After a single division 
wave, all the simulations with division orientation concentrations of 
k ≳ 4 managed to produce global fourfold order parameters of similar 
magnitude to those observed in real tissue (Fig. 5d) and exhibited 
algebraically decaying fourfold orientational correlations over the 
entire simulated domain (Fig. 5e). Simulations with sufficiently random 
division orientations destroyed all order within the system (Fig. 5d and 
Supplementary Fig. 19). Interestingly, the simulations also showed that 
the wave-like spatiotemporal choreography of division timings was 
not strictly necessary to generate fourfold order. In fact, although the 
time course of order through the simulations was markedly different, 
simulations with random division timings produced almost identical 
fourfold ordering once all the cells had divided (Fig. 5g). This observa-
tion reinforces the conclusion that oriented divisions constitute a 
robust mechanism for fourfold order generation without the need  
for micromanaged division timings. Our simulations also provided a 
platform to directly test the extent to which defects introduced  
into the ectoderm by cell division mediate the loss of order within the 
tissue (Fig. 5h).

In this work, we combined mathematical modelling with quantita-
tive flow analysis to show that cell divisions are the primary drivers of 
global tissue flow during Parhyale germband extension. We uncovered 

Fig. 5 | Oriented divisions generate fourfold order in vertex model simulations. 
a, Mean cell shape index p0 = P/√A as a function of time in the trunk segmental 
ectoderm, where P is the cell perimeter and A is the cell area. The shaded region 
shows the standard deviation. Data are aggregated from four embryos. The dotted 
lines indicate the measured values from nuclear movies, whereas the markers 
indicate values measured from the snapshots of membrane marker movies 
(Methods). The error bars on the snapshot markers denote standard deviations. 
The shape index remains close to 4 (the shape index of a perfect square) for the 
entirety of ectodermal grid formation. The green-shaded region demarcates the 
convergent extension phase of growth. b, Comparison of cell geometry and 
fourfold order drawn from data (left) and simulation (right). The magenta lines 
denote the boundaries between adjacent parasegments. c, Illustration of a typical 
division wave simulation at three representative times (in arbitrary units). The hue 
corresponds to the number of cell divisions within a lineage and saturation 
represents the orientational order (disordered regions are less saturated).  
d, Absolute value of the mean fourfold order parameter during division wave 
simulations. Different curves correspond to different concentrations k of 
distributions from which division orientations were randomly drawn (shown in f). 
Above k ≳ 5, the division wave reliably generates fourfold order. The reported 
values were averaged over five independent simulations for each value of k and the 
shaded regions show the standard error. e, Two-point correlation function of the 
fourfold orientational order parameter generated by division wave simulations 

with k = ∞. The vertical lines indicate the length and width of the tissue. The final 
configurations exhibit quasi-long-ranged fourfold order. The dashed line 
illustrates algebraic decay of ~r−1/4 and is intended as a guide for the eye.  
f, Illustrations of the von Mises distributions from which division orientations are 
drawn during simulation. Here k = 0 corresponds to uniformly random divisions 
and k = ∞ corresponds to perfectly oriented divisions. g, Absolute value of the 
mean fourfold order parameter generated using the same parameters as those in d, 
but with random division timings rather than a division wave. The reported values 
were averaged over five independent simulations for each value of k and the 
shaded regions show the standard error. h, Illustration of the breakdown of n-fold 
orientational order (n = 4, 6) in an initially square lattice due to the presence of 
defects inserted by cell divisions. i, Schematic summarizing the role of division 
choreography in generating and maintaining orientational order. The hue 
corresponds to the number of cell divisions within a lineage and the saturation and 
value represent the orientational order (less ordered regions are darker). The order 
is maintained and the grid is restored as long as the divisions are oriented along a 
single axis and each cell divides once before any particular cell divides twice. The 
cells divisions shown in the middle panels are highlighted in red. The orange 
regions in the first and last panels show that the direction of local order is coherent 
over long distances and preserved by the division choreography. In the inset in the 
second panel, A and P denote the anterior and posterior directions, whereas D and 
V denote the dorsal and ventral directions, respectively.
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a global fourfold bond-orientationally ordered phase that emerges via 
precisely oriented cell divisions. In a scheme that we call defect-driven 
morphogenesis, cell proliferation introduces defects into the local 
tissue structure, which are then mobilized by subsequent cell divi-
sions, ultimately giving rise to a highly ordered cell network (Fig. 5i). 
The choreography of these events is arranged in a timed mitotic wave, 
spreading at distinct wave velocities across the A–P and D–V axes. 
The anisotropic timing of this wave of cell divisions results in defect 
climb at room temperature. Many defects migrate out of the ectoder-
mal bulk towards the boundary. The sparse set of defects that remain 
destroy the translational order, but leave the orientational order intact. 
Defect-driven morphogenesis is an efficient as well as a highly robust 
mechanism for establishing global orientational order in the presence 
of cell divisions. Similar to non-living matter39, the insertion of new 

particles is an efficient strategy for exploring regions of configura-
tion space corresponding to orientational order. Provided a preferred 
axis, order can then be produced by having cells divide according to 
independent, internal timing mechanisms. This timing does not have 
to be precise (Supplementary Fig. 12). Order within a local region is 
preserved as long as most of the cells within that region divide once 
before any particular cell divides twice.

We showed that defect-driven morphogenesis at the single-cell 
level relies on tightly oriented cell divisions. Our analysis demonstrated 
that neither the orientation (Supplementary Fig. 20) nor the timing of 
cell divisions (Supplementary Figs. 21–23) exhibit strong correlations 
with mechanical or geometric signals. This suggests that the timing 
and orientations of cell division are actively instructed by biochemical 
signals, such as morphogen gradients or planar cell polarity, rather 

T = 85.8 h

b
T =  85.8 h

Measured Simulated

0

x

–π/2 –π/4 π/4 π/2
0

1

2

3

4

D
iv

is
io

n 
or

ie
nt

at
io

n
PD

F,
 f(

x|
k)

k = 0
k = 2
k = 6
k = 20
k = ∞

f g

d
Division wave 

e

Randomly ordered 
divisions

h

100 101

Distance (mean cell lengths)

10–2

10–1

T = 0 a.u.
T = 54 a.u.
T = 108 a.u.

~r–1/4

Division wave, k = ∞

Initial square 
lattice 

1

0.90.4

20
0

0.1

0.2

0.3

0.4

40 60

Time (a.u.)

80 100

0.3

0.2

0.1

0
20 40 60

Time (a.u.)
80 100

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
20 40 60

Number of defects
80 100

a
T = 0 a.u.

T = 54 a.u.

0 0.5 1.0

T = 108 a.u.

|�Ψ4�| = 0.06

|�Ψ4�| = 0.33

|ψ4|

|�Ψ4�| = 0.40

c

0 0.5 1.0

|Ψ4|
Pre-division

0 0.5 1.0

Mitotic waves lead
to defect climb

Order is restored
i

A

D D

P

V

Initial lattice

|Ψ4|
Pre-division

|�Ψ4�|

|�Ψ
n�|

|�Ψ
4�|

|�Ψ
4�|

Fo
ur

fo
ld

 c
or

re
la

tio
ns

, �
Ψ

4(
r)

Ψ
* 4

(0
)�

|�Ψ6�|

3.8

3.9

75 80 85

Time (h AEL)

90

4.0

4.1

Sh
ap

e 
in

de
x,

 P
/√

A

4.2

http://www.nature.com/naturephysics


Nature Physics | Volume 19 | August 2023 | 1201–1210 1209

Article https://doi.org/10.1038/s41567-023-02025-3

than by mechanical feedback. It would be interesting to investigate the 
precise nature of these biochemical signals. In addition to whatever 
biochemical symmetry breaking that may set the division timings and 
orientations, it would also be interesting to clarify the role of myosin 
in the system, since heterogeneous distributions of junctional myosin 
have been shown to be capable of generating similar cobblestone pat-
terns in the absence of cell proliferation11.

The challenges associated with the live imaging of Parhyale lim-
ited the number of datasets that could be included in the quantitative 
analysis. The robustness of our conclusions, however, is supported by 
fact that Parhyale is a lineage-invariant direct developer, an observa-
tion previously inferred from fixed samples23 and also confirmed by 
our cell-tracking analysis. Additionally, conclusions about the behav-
iour of individual parasegments are drawn from observations with 
greater reproducibility than the number of datasets alone, since each 
of the many parasegments was shown to operate as an independent 
supercellular unit.

For small direct developers, like Parhyale, arranging cells in an 
ordered grid might be one of the very few possibilities to establish 
a coordinate system in the presence of growth22. It is intriguing to 
speculate whether large embryos, with abundant cell numbers, utilize 
a similar ordering strategy at the mesoscale when arranging bigger 
periodic units comprising many cells, such as somites in vertebrates40. 
Future work will investigate how defect-driven morphogenesis differs 
in implementation between relatively small embryos and embryos with 
large cell numbers and the relationship between tissue-scale order and 
shape change (Supplementary Fig. 24).

Online content
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Methods
Light-sheet microscopy
For the live imaging of transgenic Parhyale embryos, we utilized a 
custom-built multiview selective-plane illumination microscope26. 
This microscope has two excitation and two detection branches. Both 
used water-dipping objectives (App LWD 5× (numerical aperture, 1.1), 
Nikon Instruments, for detection and CFI Plan Fluor 10× (numerical 
aperture, 0.3) for excitation). Furthermore, each detection branch 
consisted of a filter wheel (HS-1032, Finger Lakes Instrumentation), 
with emission filters (BLP02-561R25, Semrock), tube lens (200 mm, 
Nikon Instruments) and a camera (scientific complementary metal–
oxide–semiconductor; Hamamatsu Flash 4.0 V2), with an effective 
pixel size of 0.262 mm. The illumination branches featured a tube lens 
(200 mm, Nikon Instruments), scan lens (S4LFT0061/065, Sill Optics), 
galvanometric mirror (6,215 h, Cambridge Technology) and discrete 
laser line (561LS OBIS, 561 nm). The optical section employed a transla-
tion stage from Physik Instrumente (P-629.1CD with E-753 controller), 
rotation stage (U-628.03 with C-867 controller) and linear actuator 
(M-231.17 with C-863 controller).

Data post-processing and microscope automation
To operate the microscope, we used µManager41, installed on a Super-
micro 7047GR-TF server, with a 12-core Intel Xeon 2.5 GHz, 64 GB PC3 
RAM and hardware RAID level 0 with seven 2.0 TB SATA hard drives. For 
each sample, we recorded four views, separated by 90°-rotated views, 
with optical sectioning of 2 μm and temporal resolution of 5 min. We 
embedded the embryos in agarose-containing beads as a diagnostic 
specimen. This was used to register individual views into a common 
frame by utilizing the Fiji multiview deconvolution plugin42, resulting 
in a final image with an isotropic resolution of 0.2619 μm.

Dataset curation for quantitative analysis
Since Parhyale is an emerging model organism, access to protocols 
and perturbations is sharply limited compared with established 
model organisms, such as Drosophila (ref. 21). A total of four embryos 
were used to generate the analysis in this work. Improvements to 
animal-handling techniques and imaging protocols are necessary 
for future work to involve larger sample sizes. Due to the challenges 
associated with the in toto live imaging of Parhyale, it was not possible 
to image all the embryos for the complete duration of germband exten-
sion. Two datasets featuring transgenic embryos with a fluorescent 
nuclear marker were produced. One embryo was imaged from 55.8 to 
91.9 h AEL, but only the period from 72.5 to 91.9 h AEL was included in 
the analysis since the first part of the movie preceded germband exten-
sion. The validation of the hydrodynamic model (Fig. 4) was performed 
using this dataset. A second extended movie of a transgenic embryo 
with a fluorescent nuclear marker, filmed between 79.4 and 93.0 h 
AEL, was also analysed and tracked. Other than the validation of the 
hydrodynamic model, all the major aspects of the analysis also drew 
from this dataset. Two movies featuring a lipid membrane dye FM-464 
marker, rather than a nuclear marker, were also filmed between 75.8 and 
79.4 h AEL as well as 80.0 and 83.1 h AEL. These movies were included 
in the analysis of the global bond-orientational order parameters  
(Fig. 2d) and cell shape index (Fig. 5a).

Extraction of dynamical surfaces of interest
The output of the light-sheet microscope is a time series of 3D grids 
whose voxel values correspond to the intensity of the nuclear label or 
lipid dye. The extraction of the dynamical surface of interest from these 
datasets was performed in two stages: (1) 3D surface extraction and 
(2) 2D pullback map construction. In the surface extraction stage, the 
volumetric data of a representative time point were classified over the 
nuclear label/dye using the machine learning software called ilastik43. 
The resultant probability map was then fed into MATLAB R2019b and a 
static surface of interest was extracted using the morphological active 

contours method44 (Supplementary Fig. 1), a type of level-set-based 
segmentation algorithm well suited for segmenting complicated closed 
surfaces. The output of this segmentation is a 3D binary level set, with 
identical dimensions to the data, where ‘1’ values corresponded to 
the interior of the closed surface (all the embryonic tissues and yolk) 
and ‘0’ values corresponded to regions external to the Parhyale egg. 
The boundary of this binary level set is a point cloud, a subset of which 
included voxels corresponding to the embryonic tissue. This point 
cloud was subsequently triangulated using Poisson surface reconstruc-
tion45. The result was a topologically spherical mesh triangulation.

In the next processing step, this static surface was used as a seed to 
extract the dynamically changing surface at each time point. Recall that 
at this developmental stage, the embryonic tissue is a topological disc 
sitting on top of a spherical yolk. The embryonic tissue was, therefore, 
contained in a disc-like subregion of the sphere-like surface triangula-
tion. To extract this region of interest, the entire sphere-like mesh was 
mapped into the plane using the orbifold Tutte embedding method46. 
This method generates a topologically consistent parameterization 
of the sphere in the plane, allowing us to view the entire surface at 
once with minimal geometric distortion. Next, a static submesh of the 
region of interest on the static surface was manually selected using the 
orbifold pullbacks. Although static, this region of interest was large 
enough that it contained all the relevant sections of the embryo as it 
grew and deformed over time. A set of ‘onion layers’ were then created 
by displacing the submesh along its positive and negative normal direc-
tions. A stack of pullback images were then created for each time point 
with one image in the stacks for each displaced onion layer. The number 
of layers and interlayer spacing were chosen so that all the geometric 
features of the dynamic surfaces were captured for the various time 
points somewhere within the image stack. These stacks were then fed 
back into ilastik and batch processed again over the nuclear label/dye. 
The result was a time-dependent field of normal displacements over 
the static seed surface that transformed the static surface into the 
corresponding dynamic surface for each time point. These dynamic 
triangulations of the evolving region of interest were then separately 
mapped into the unit disc conformally via Ricci flow47. Such a confor-
mal mapping is only unique up to a Möbius automorphism of the unit 
disc. In other words, unless care is taken to register the pullbacks, 
the resultant images may be wildly misaligned in the pullback space 
from one time point to another. With this in mind, the time series of 
conformal pullbacks was iteratively registered to fix the conformal 
degrees of freedom within the pullbacks. Essentially, corresponding 
mesh vertices at subsequent times were approximately matched in two 
dimensions by finding an optimal Möbius automorphism of the unit 
disc that registered as many points as possible without sacrificing the 
conformality of parameterization48. The final result was a sequence 
of maximally aligned conformal pullbacks of the growing embryo to 
the plane. The conformality of these discrete parameterizations is 
illustrated in Supplementary Fig. 2.

It is worthwhile here to briefly discuss the constraints of visual-
izing curved surfaces in the plane via their parameterizations. Gauss’ 
celebrated Theorema Egregium forbids the construction of a globally 
isometric planar parameterization for a 2D surface with a non-zero 
Gaussian curvature49. In other words, if you want to map a curved sur-
face into the plane, you can do so in a way that preserves angles (a con-
formal map), in a way that preserves areas (an authalic or isoareal map), 
or in a way that balances both non-zero angle distortion and non-zero 
area distortion, but you can never do so in a way that perfectly preserves 
the angles and areas everywhere. The central focus of this work is the 
orientational order of cells within a curved tissue. As such, we generally 
choose to visualize surfaces using conformal maps that preserve the 
angles between neighbouring cells from which the orientational order 
can be constructed. This means that some area distortion within the 
figures is inevitable. For instance, in Fig. 2c, it appears that lateral cells 
are larger than cells near the ventral midline. However, calculating the 
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cell areas using tissue cartography reveals that the cell size is essentially 
uniform in the tissue at a given time point (Supplementary Fig. 13). 
Instead, the cell size primarily varies as a function of location in the 
cell cycle (recently divided cells are smaller; Supplementary Fig. 21b).

It should also be noted that the tissue cartography framework 
allows the user to implement not only conformal mappings but also a 
broad variety of parameterizations depending on the application. The 
visualization of the full embryo dynamics (Supplementary Video 4)  
was created using an ‘as-rigid-as-possible’ parameterization50. This 
parameterization attempts to produce a high-quality visual representa-
tion of the 3D surface in the plane by settling on an optimal balance of 
angle distortion and area distortion.

In-plane cell segmentation and pathline reconstruction
One primary benefit of tissue cartography is that processing data in low 
dimensions greatly reduces the computational complexity of various 
analysis procedures. We exploited this benefit by directly segmenting 
the nuclei in the 2D pullback images. Images were first classified in ilas-
tik. The resultant probability maps were then fed in MATLAB where the 
nuclei were segmented using a custom-built version of the watershed 
algorithm51. Custom additions to MATLAB’s built-in watershed func-
tionality were necessary to account for spatially proximal nuclei that 
were initially undersegmented, that is, many nuclei were only counted 
as a single object. Special care was taken during this step in adjusting 
the watershed parameters to ensure that adjacent nuclei were properly 
distinguished from each other.

Once segmented, the nuclei were semiautomatically tracked using 
an enhanced point-matching procedure. For a given time point, the 
input to this procedure included a pullback image and segmentation at 
time t and another subsequent pullback image and segmentation at time 
t + 1. First, the subsequent pullback image was registered onto the previ-
ous image using Demon’s deformable image registration algorithm52. 
The resultant displacement fields were then applied to the nuclei loca-
tions at time t + 1. Point matching was then used to associate the nuclei 
locations at time t with the displaced nuclei at t + 1. Displacing the nuclei 
locations at t + 1 to align more closely with the locations at t reduced the 
discrepancies in point matching associated with large nuclear motions. 
This process was iteratively applied until pathlines were generated for 
all the cell lineages at all the time points. Despite these enhancements, 
some manual correction was still necessary. These manual corrections 
were applied using a custom-built MATLAB graphical user interface. The 
pathlines were outputted as a digraph where the nodes represented par-
ticular cells at particular time points and edges stored the information 
about the temporal relationships between the nodes. The cell divisions 
could then be extracted from this tracking structure by locating events 
where single tracks split into two lineages.

Another benefit of tissue cartography is that the geometric infor-
mation reflecting the fact that in-plane dynamics are occurring on 
a 2D surface embedded in 3D space are properly preserved. In par-
ticular, knowing the 2D locations of nuclei in pullback space provides 
an explicit correspondence to their locations on the surface in three 
dimensions. Therefore, once the tracks were constructed in two dimen-
sions, it was trivial to extract full 3D nuclear pathlines. Velocities were 
constructed as simple backward differences between 3D nuclei loca-
tions. A backward difference was used since forward differences can 
generate ambiguities at cell division events where the forward dif-
ference velocities of the children sum to zero. The 3D velocities were 
decomposed into tangential and normal components relative to the 
dynamic surface. Tangential velocities were then consistently trans-
formed back into the pullback space for display purposes using a dis-
cretization of the Jacobian on mesh triangulation faces.

Region-of-interest selection for dynamical quantities
For any quantity depending on the measured cell tracking, with specific 
emphasis on the theoretical predictions of tissue velocities induced 

by cell divisions (Fig. 4), the region of interest was always defined to 
be the maximal set of PSPRs that we could accurately track and follow 
through at least one round of mitotic wave divisions. All other seg-
ments were either already substantially progressed into their second 
mitotic wave or had not completed their first mitotic wave by the end 
of our recordings. As time progresses, the region of interest expands 
to include all the clonal progeny of these chosen segments. The lateral 
extent of each PSPR was also carefully considered. It is understood that 
many cells at the dorsal boundary of the ventral ectoderm are in fact 
extra-embryonic and do not remain in the tissue as morphogenesis 
proceeds22,25. On these grounds, any cell near the dorsal boundary of 
the tissue that appeared to detach from the ectoderm or that could not 
be confidently associated with a particular PSPR was excluded from 
any subsequent analysis.

Calculation of discrete curvatures
The discrete curvature was calculated for each dynamic mesh trian-
gulation as a function of time using standard discrete constructions 
(Supplementary Fig. 24)53. The Gaussian curvature K(vi) of a mesh 
vertex vi was taken to be

K(vi) =
1
Ai

(2π − ∑
Fj∈𝒩𝒩F𝒩vi)

θFj) , (3)

where Ai is the area associated to each vertex via the barycentric sub-
division of the triangles attached to that vertex, 𝒩𝒩F(vi)  is the set of 
incident faces Fj attached to vi and θFj  is the internal angle of face Fj 
corresponding to vi. The mean curvature H(vi) of a vertex vi was calcu-
lated according to

Δ ⃗x i = 2H(vi) n̂i, (4)

where ⃗x i is the 3D location of vertex vi, n̂i is the unit normal vector cor-
responding to vertex vi and Δ denotes the Laplace–Beltrami operator. 
The discrete Laplace–Beltrami operator was implemented using the 
familiar co-tangent discretization as53

Δ ⃗x i =
1
2Ai

∑
vj∈𝒩𝒩v𝒩vi)

(cotαij + cotβij) ( ⃗x j − ⃗x i), (5)

where 𝒩𝒩v(vi) is the neighbourhood of vertices attached to vertex vi, and 
αij and βij are the two internal angles of the triangles opposite the edge 
shared by vertex vi and vj. To extract H(vi) from equation (4), it was first 
necessary to calculate n̂i, which was taken to be the angle-weighted 
average of the face unit normal vectors of the triangles incident to 
vertex vi assuming a counterclockwise orientation of vertices in the 
faces. This choice breaks the degeneracy in the orientation of the unit 
normal and allows for the simple extraction of a signed mean curvature. 
The panels in Supplementary Fig. 24 were constructed by averaging 
the Gaussian and mean curvatures of all the vertices found to lie within 
a particular Voronoi polygon corresponding to a specific cell after 
conformally mapping the dynamic meshes into the plane.

Construction of correlation functions
To construct the two-point orientational order correlation functions, 
we first calculated the fourfold and sixfold orientational order param-
eters for each cell at a particular time point. Next, for each pair of cells, 
denoted here by their locations x1 and x2, we calculated the intercellular 
distance. This distance was taken to be the geodesic distance along the 
dynamic surface between the locations of the cell centroids on the 3D 
mesh triangulation54. We also calculated the product ψn(x1)ψ∗

n(x2) for 
each pair of cells, where n ∈ {4, 6}. We then partitioned the intercellular 
distances into a set of bins. All the pairs whose spacing lay between  
r and r + dr, where dr was the width of a bin, were then averaged together 
to calculate the two-point orientational order correlation function 
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< ψn(x1)ψ∗
n(x2) >. For this calculation, it was assumed that this quantity 

only depended on the scalar distance r between the pairs of cells, that 
is, < ψn(x1)ψ∗

n(x2) >=< ψn(r12)ψ∗
n(0) >. Note that under averaging, only 

the real part of the product ψn(x1)ψ∗
n(x2)  contributed, since 

ψn(x1)ψ∗
n(x2) + ψn(x2)ψ∗

n(x1) = 2Re[ψn(x1)ψ∗
n(x2)]. Finally, the intercellular 

distances were normalized by an average cell-length scale, calculated 
as the square root of the average area contained by each cell’s Voronoi 
polygon mapped back into three dimensions.

Following previous work16,20, information about translational 
order was extracted using variations in the pair correlation func-
tion g(Δr), that is, the high-resolution histogram of oriented geo-
desic distances between pairs of cells normalized by the number of 
pairs expected for a Poisson-distributed set of cell centres. Here an 
oriented geodesic distance Δr12 from x1 to x2 consisted of a scalar 
geodesic distance r12 and an orientation of the outgoing geodesic 
curve in the tangent space of the surface at x1. Integrating this func-
tion over all the orientations of the separation vectors yields the 
isotropic pair correlation function g(r) (also known as the radial 
distribution function), which gives information about the positional 
order present in all the directions as a function of distance. In addi-
tion to g(r), we also constructed anisotropic distributions that only 
aggregated information about oriented pairwise separations along 
the A–P and D–V axes (gAP(r) and gDV(r), respectively). The construc-
tion of all these distributions proceeded similar to the construction 
of the orientational order correlation function and also relied on the 
calculation of the pairwise geodesic distance between the cells. All 
the pairs of cells whose separation lay between r and r + dr, and whose 
relative orientation lay along the appropriate axes in the case of gAP(r) 
and gDV(r), were consolidated into histograms within a set of bins (of 
width dr) segmenting the intercellular spacing. The histograms were 
then normalized using an ‘effective volume method’ that directly 
accounts for and ameliorates finite size effects55. In the following 
explanation, we focus on the radially symmetric pair correlation 
function g(r) for simplicity. Naively, the pair correlation function 
is normalized by the expected number of cell pairs predicted by a 
Poisson distribution, that is

g(r) =
N
∑
i=1

ni(r)
NρdV

, (6)

where ni(r) is a count of the number of cells having their centres at a dis-
tance between r − dr/2 and r + dr/2 from the centre of the ith cell in the 
measurement volume, N is the total number of cells in the measurement 
volume, ρ = N/V is the raw number density of cells in the measurement 
volume, V is the total measurement volume and dV is the volume of 
the generalized shell between r − dr/2 and r + dr/2 (dV = 2πrdr for a 2D 
shell). Instead, we report the quantity as

g(r) =
N
∑
i=1

ni(r)
NρdVi

, (7)

where now, dVi is defined as the intersection of the shell dV(r) centred 
on cell i with the finite measurement volume V. This intersection vol-
ume, therefore, had to be individually calculated for each cell and for 
each distance bin. The final reported quantities were g(r) − 1 since this 
quantity decays to zero in a disordered system. An analysis of the finite 
size effects present in both orientational and translational correlation 
functions can be found in Supplementary Fig. 9.

Circular statistics for division events
To properly analyse the distributions of division events, it was neces-
sary to construct the measures of statistical properties that prop-
erly accounted for the nematic nature of division events, that is, a 
division event with orientation θ is physically identical to a division 
event with orientation θ ± π. Extending familiar measures of circular 

distributions56, the modified circular mean of the orientations of a set 
of division events, {θn}, where n = 1, …, N, was defined to be

θ = 1
2 arg [

N
∑
n=1
e2iθn] ∈ [−π2 ,

π
2 ] , (8)

which is invariant under the transformation θn → θn ± π for any θn. If the 
division orientations are tightly distributed around a single value, then 
this quantity will also be close to that particular value. We also define a 
modified measure of angular dispersion as

s =
√√√
√
2(1 − 1

N

N
∑
n=1
e2iθn). (9)

Note that this is a dimensionless quantity. Our measure of angular 
dispersion varies between s = 0 for perfectly oriented divisions (θn = θ  
for all n) and s = √2 for totally isotropic divisions.

Determination of average division velocity
Division events were extracted from the tracking structure and the 
resulting sample set was pruned for quality (sufficiently far from the 
boundary of the tissue, sufficiently far from another division event 
and so on). To compare different events, divisions were translated 
and rotated so that the centre of mass of the daughter cells lay at 
the origin and the division axis lay along the y axis. The measured 
velocities of the daughter cells and cells in the third-order natural 
neighbourhood of the daughter cells were then interpolated onto 
fine-mesh triangulation using generalized Hessian energy scheme 
that minimizes distortion in the interpolated field at the boundary 
of the triangulation57. The interpolated velocity fields were then 
averaged across division events to find the mean velocity induced by 
divisions (Fig. 4e and Supplementary Fig. 14). Gradients of the result-
ant velocity fields were calculated on the mesh triangulation using 
a custom-built implementation of the discrete exterior calculus58 in 
MATLAB (Supplementary Fig. 15).

Numerical prediction of tissue velocities from cell divisions
An active hydrodynamic model was used to predict the tissue veloci-
ties resulting from the collective motion induced by cell divisions. We 
briefly explain the model here to properly describe how it was numeri-
cally solved to predict the tissue velocities using actual data. The full 
details of the model, including a derivation, are presented in the Sup-
plementary Text. Tissue velocities were calculated as the solution to 
the following boundary value problem:

ν1 ∇2v + ν2 ∇ (∇ ⋅ v) = −∇ ⋅ σσσa ≡ −Fa, (10)

where v denotes the tissue velocities; σa are the active stresses due to 
divisions; Fa are the corresponding active forces; ν1 = τRμ is the effec-
tive shear viscosity; ν2 = τR(μ + λ) is the effective bulk viscosity; τR is a 
timescale corresponding to mechanical relaxation due to growth/
tissue remodelling; and μ and λ are the familiar Lamé parameters of 
continuum elasticity. To simplify the numerical analysis, this model 
was reformulated as

∇2v + 1
1 − 2ν ∇ (∇ ⋅ v) = − ̃Fa, (11)

where now ̃Fa
 is a renormalized set of active forces and ν is analogous 

to the Poisson ratio obtained by treating the tissue as an idealized 
thin 3D material, that is, as opposed to a true 2D material. The  
(renormalized) active forces induced by each division event were 
modelled as resulting from a circular Eshelby inclusion of radius a 
and eigenstrain
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ϵ∗ = (M/2) I + q(2 n̂⊗ n̂ − I), (12)

where I is the 2 × 2 identity matrix and n̂ is a unit vector along the divi-
sion axis. Here M is a parameter controlling the isotropic contribution 
of the divisions that mediates area growth and q controls the deviatoric 
contribution that mediates constant-area shear.

The model was numerically solved for actual data using custom 
finite-element-method machinery. First, a fine-mesh triangulation 
was constructed over a subset of tracked cells at a particular time 
(Supplementary Fig. 16a). Circular holes containing cells about to 
divide were then removed from the triangulation. These holes repre-
sented the finite-sized circular Eshelby inclusions used to model the 
velocities induced by cell divisions (Supplementary Text). The size of 
the holes was chosen so that the area of the circular holes equalled the 
area of the Voronoi polygons of the corresponding cells. Removing the 
inclusions from the mesh renders the task of predicting velocities a 
simple boundary value problem with Dirichlet boundary conditions. 
The velocities on the interior boundary vertices were set to match the 
analytical predictions of the model (that is, the displacement field 
induced by the inclusion) plus a constant term equal to the average 
measured velocity of the entire tissue to account for the advection 
of the dividing cell with the tissue-scale flow. This choice constrained 
simultaneous inclusions to move with the same advection velocity. In 
principle, one might expect that each inclusion should advect with 
its own velocity, which could be derived from the data, for instance, 
by averaging the measured velocities in a local region around each 
division event. Numerical experiments, however, show that this addi-
tional machinery produces virtually indistinguishable results from the 
uniform advection velocity implementation. This insensitivity can be 
understood by noting that the velocity induced by each division event 
dwarfed the bulk velocity of the rest of the tissue (Vdiv/<Vbulk> ≈ 7), such 
that minor changes to the imposed advection velocity did not strongly 
alter the results. The velocities on the exterior boundary were set to 
the measured velocities. Using the measured velocities on the exterior 
boundary captured how the cells not included in the subregion contrib-
uted to the relevant motion within the region over which the velocities 
were predicted. The results of the numerical solution were a velocity 
vector for each triangulation vertex. For cells that did not divide, all 
the vertices contained within each corresponding Voronoi polygon 
were then averaged to produce a single-cell velocity vector. Note that 
many vertices were averaged for each polygon, so that prescribing 
Dirichlet boundary conditions on the triangulation did not correspond 
to prescribing cell-scale velocities. Note that under deformation, the 
circular inclusions were deformed into ellipses. The locations of the 
foci of these ellipses were directly given by the fluid mechanical model. 
The velocity of cells that divided were set to be the displacement of 
these foci from the centre of the undeformed circular inclusion. For 
our purposes, we set ν = 1/3 for all the time points and parameters M 
and q were separately fit for each time point containing divisions using 
MATLAB’s lsqnonlin to minimize the resulting velocity residuals. To 
produce the ‘division-only’ predictions (Supplementary Fig. 18), we 
simply summed the contribution of the analytical prediction for each 
division event at each time point without solving the boundary value 
problem using the measured data on the domain boundary.

The velocity residual
To compare the measured flow fields v(x) with the predicted flow 
fields u(x) in a quantitative fashion, we defined a global measure for 
the spatial velocity residual that was insensitive to noise-dominated 
fluctuations in the regions of slow flow. Let

< u >≡ √< u(x) ⋅ u(x) > embryo (13)

define an overall magnitude of the field u(x). Here <u(x)⋅u(x)>embryo 
denotes an average of the spatially dependent field u2(x) = u(x)⋅u(x) 

over the entire embryo and is, therefore, not space dependent. We 
define our velocity residual as

R =
(< u >2 v2(x) + u(x)2 < v >2) − 2√< u >2< v >2v(x) ⋅ u(x)

2< u >2< v >2
. (14)

This residual provides a spatial discrepancy map, quantifying the 
prediction quality as a function of location on the embryo. An identical 
velocity residual was used elsewhere33.

Generation of synthetic datasets and comparison with 
measured data
The synthetic datasets were generated to understand the extent to 
which the measured order was statistically significant and how the 
finite size of the germband affected the order. First, the length and 
width of the germband at each time was extracted. These were deter-
mined by tagging the representative rows and columns of cells, fol-
lowing these rows and columns over time and calculating the geodesic 
length along each row and column. The average geodesic length of the 
rows (columns) was taken to be the width (length) of the germband at 
a particular time. We also extracted a mean cell density at each time 
point by averaging the inverse 3D areas of cells. Here 1,000 synthetic 
datasets were generated for each time point within rectangles with 
the same length and width as the germband. Points representing the 
cell centroids were generated to exhibit the same cell density as the 
germband using a fast Poisson disc sampling method59. The connec-
tivity of these randomly generated points was approximated using 
Voronoi tesselation. This connectivity allowed for the calculation of 
the order parameters and orientational correlation functions over 
the finite-sized samples. We also calculated the radial distribution 
functions along the A–P axis (length of the rectangle) and D–V axis 
(width of the rectangle) for each synthetic dataset (Supplementary 
Fig. 8) using the same method of construction as the measured data.

Additionally, we compared the corresponding measured and 
synthetic distributions of orientational order parameters according 
to the two-sample Kolmogorov–Smirnov (K–S) test60 using MATLAB’s 
kstest2. This implementation of the K–S test returns two measurements 
that assess the confidence with which one can assert that two sets of 
observed random variables are drawn from the same distribution. 
The first is the K–S statistic, which is simply the maximum difference 
between the empirical cumulative distribution functions of the two 
sample sets. The larger the K–S statistic, the greater is the discrepancy 
between the two sample sets. The second measurement is the asymp-
totic p value, which is the probability of observing a test statistic as 
extreme as—or more extreme than—the observed value under the null 
hypothesis that both samples are drawn from the same distribution. All 
the K–S statistics and p values are reported in Supplementary Table 1.  
At the confidence level of α = 0.05, the null hypothesis is rejected for all 
the distributions, indicating it is unlikely that the observed order at any 
time point is due to chance. We note that the p values for fourfold order 
at intermediate and late times are vastly smaller than the correspond-
ing p values at early times, whereas the p values for sixfold order do not 
change as drastically. This implies that although it is still improbable 
that the observed fourfold order at early times is due to chance, it is 
hugely more likely compared with intermediate and late times after 
the order-generating choreography has unfolded.

Similar methods were used to generate the synthetic illustra-
tion of a translationally ordered system (Supplementary Fig. 7). We 
patterned perfect square lattices on rectangles with the same length 
and width as the germband for the same representative time points. 
The lattice spacing was set to match the measured cell density at the 
corresponding time point. We then generated 100 synthetic datasets 
for each time point by adding Gaussian white noise to the lattice site 
positions with a signal-to-noise ratio of 5. The calculation of the ori-
entational order parameters, orientational correlation functions and 
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radial distribution functions were performed in the same manner as 
the other synthetic datasets.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The 2D pullback images and 3D surface mesh triangulations for all 
the time points of all the datasets and the simulated data used for 
order parameter measurement validation are available via Dryad at 
https://doi.org/10.1101/2021.07.28.453899 (ref. 61). Raw light-sheet 
microscopy output is available from the corresponding authors upon 
request (D.J.C. or S.J.S.).

Code availability
The code used to generate the vertex model simulations, perform 
finite size effect analysis, perform order parameter significance 
validation and some additional general-purpose code is available 
via GitHub at https://github.com/DillonCislo/DefectDrivenMorpho-
genesisPublic.git.
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