Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Destabilization of hidden order in URu2Si2 under magnetic field and pressure

Abstract

The mystery of the hidden-order phase in the correlated electron paramagnet URu2Si2 is still unsolved. To address this problem, one strategy is to search for clues in the subtle competition between this state and neighbouring magnetically ordered states. It is now well established that long-range antiferromagnetic order can be stabilized in this metal when it is under pressure and that a spin-density wave manifests when a magnetic field is applied along the easy magnetic axis c. However, the full boundaries of the hidden-order phase in the pressure–magnetic-field plane have not been determined so far. Here we present a systematic investigation of URu2Si2 under combined high pressures and intense magnetic fields. The boundaries of the hidden-order, antiferromagnetic and spin-density-wave phases are mapped out, indicating an intricate three-dimensional phase diagram. We show that the field-induced spin-density-wave and hidden-order phases disappear in favour of antiferromagnetism at high pressure. Interestingly, a large number of phase boundaries are controlled by the field and pressure dependences of a single parameter. This gives new constraints for theories that model the electronic correlations and ordered phases in URu2Si2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electronic phase diagram under pressure and magnetic field.
Fig. 2: Low-temperature resistivity and its derivative versus magnetic field under pressure.
Fig. 3: Resistivity versus magnetic field at different temperatures and pressures.
Fig. 4: Magnetic-field–temperature phase diagrams under pressure.
Fig. 5: Field and pressure variations of normalized quantities.
Fig. 6: Field and pressure variations of characteristic ratios.

Similar content being viewed by others

Data availability

Source data are available for this paper. The other data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Armitage, N. P., Fournier, P. & Greene, R. L. Progress and perspectives on electron-doped cuprates. Rev. Mod. Phys. 82, 2421–2487 (2010).

    ADS  Google Scholar 

  2. Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803–1061 (2010).

    ADS  Google Scholar 

  3. Flouquet, J. On the heavy-fermion road. Prog. Low Temp. Phys. 15, 139–281 (2005).

    Google Scholar 

  4. von Löhneysen, H., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    ADS  Google Scholar 

  5. Aoki, D., Knafo, W. & Sheikin, I. Heavy fermions in a high magnetic field. C. R. Phys. 14, 53–77 (2013).

    ADS  Google Scholar 

  6. Pfleiderer, C. Superconducting phases of f-electron compounds. Rev. Mod. Phys. 81, 1551–1624 (2009).

    ADS  Google Scholar 

  7. Mydosh, J. A. & Oppeneer, P. M. Colloquium: Hidden order, superconductivity, and magnetism: the unsolved case of URu2Si2. Rev. Mod. Phys. 83, 1301–1322 (2011).

    ADS  Google Scholar 

  8. Palstra, T. T. M. et al. Superconducting and magnetic transitions in the heavy-fermion system URu2Si2. Phys. Rev. Lett. 55, 2727–2730 (1985).

    ADS  Google Scholar 

  9. Broholm, C. et al. Magnetic excitations in the heavy-fermion superconductor URu2Si2. Phys. Rev. B 43, 12809–12822 (1991).

    ADS  Google Scholar 

  10. Bourdarot, F., Raymond, S. & Regnault, L.-P. Neutron scattering studies on URu2Si2. Phil. Mag. 94, 3702–3722 (2014).

    ADS  Google Scholar 

  11. LeR. Dawson, A., Datars, W. R., Garrett, J. D. & Razavi, F. S. Electrical transport in URu2Si2. J. Phys. Condens. Matter 1, 6817–6828 (1989).

    ADS  Google Scholar 

  12. Bel, R., Jin, H., Behnia, K., Flouquet, J. & Lejay, P. Thermoelectricity of URu2Si2: giant Nernst effect in the hidden-order state. Phys. Rev. B 70, 220501 (2004).

    ADS  Google Scholar 

  13. Kasahara, Y. et al. Exotic superconducting properties in the electron-hole-compensated heavy-fermion “semimetal” URu2Si2. Phys. Rev. Lett. 99, 116402 (2007).

    ADS  Google Scholar 

  14. Santander-Syro, A. F. et al. Fermi-surface instability at the ‘hidden-order’ transition of URu2Si2. Nat. Phys. 5, 637–641 (2009).

    Google Scholar 

  15. Schmidt, A. R. et al. Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2. Nature 465, 570–576 (2010).

    ADS  Google Scholar 

  16. Aynajian, P. et al. Visualizing the formation of the Kondo lattice and the hidden order in URu2Si2. Proc. Natl Acad. Sci. USA 110, 10383–10388 (2010).

    Google Scholar 

  17. Broholm, C. et al. Magnetic excitations and ordering in the heavy-electron superconductor URu2Si2. Phys. Rev. Lett. 58, 1467–1470 (1987).

    ADS  Google Scholar 

  18. Niklowitz, P. G. et al. Parasitic small-moment antiferromagnetism and nonlinear coupling of hidden order and antiferromagnetism in URu2Si2 observed by Larmor diffraction. Phys. Rev. Lett. 104, 106406 (2010).

    ADS  Google Scholar 

  19. Hassinger, H. et al. Similarity of the Fermi surface in the hidden order state and in the antiferromagnetic state of URu2Si2. Phys. Rev. Lett. 105, 216409 (2010).

    ADS  Google Scholar 

  20. Okazaki, R. et al. Rotational symmetry breaking in the hidden-order phase of URu2Si2. Science 331, 439–442 (2011).

    ADS  Google Scholar 

  21. Tonegawa, S. et al. Direct observation of lattice symmetry breaking at the hidden-order transition in URu2Si2. Nat. Commun. 5, 4188 (2013).

    ADS  Google Scholar 

  22. Choi, J. et al. Pressure-induced rotational symmetry breaking in URu2Si2. Phys. Rev. B 98, 241113(R) (2018).

    ADS  Google Scholar 

  23. Tabata, C. et al. X-ray backscattering study of crystal lattice distortion in hidden order of URu2Si2. Phil. Mag. 94, 3691–3701 (2014).

    ADS  Google Scholar 

  24. Kambe, S. et al. Odd-parity electronic multipolar ordering in URu2Si2: conclusions from Si and Ru NMR measurements. Phys. Rev. B 97, 235142 (2018).

    ADS  Google Scholar 

  25. Wang, L., et al. Electronic nematicity in URu2Si2 revisited. Preprint at https://arxiv.org/abs/2005.01189v1 (2020).

  26. Fujimoto, S. Spin nematic state as a candidate of the hidden order phase of URu2Si2. Phys. Rev. Lett. 106, 196407 (2011).

    ADS  Google Scholar 

  27. Haule, K. & Kotliar, G. Complex Landau–Ginzburg theory of the hidden order in URu2Si2. Europhys. Lett. 89, 57006 (2010).

    ADS  Google Scholar 

  28. Thomas, C., Burdin, S., Pépin, C. & Ferraz, A. Three-dimensional modulated spin liquid model applied to URu2Si2. Phys. Rev. B 87, 014422 (2013).

    ADS  Google Scholar 

  29. Chandra, P., Coleman, P. & Flint, R. Nature 493, 621–626 (2013).

    ADS  Google Scholar 

  30. Ikeda, H. et al. Emergent rank-5 nematic order in URu2Si2. Nat. Phys. 8, 528–533 (2012).

    Google Scholar 

  31. Knafo, W., Raymond, S., Lejay, P. & Flouquet, J. Antiferromagnetic criticality at a heavy-fermion quantum phase transition. Nat. Phys. 5, 753–757 (2009).

    Google Scholar 

  32. Hassinger, E. et al. Temperature-pressure phase diagram of URu2Si2 from resistivity measurements and ac calorimetry: hidden order and Fermi-surface nesting. Phys. Rev. B 77, 115117 (2008).

    ADS  Google Scholar 

  33. Bourdarot, F. et al. Hidden order in URu2Si2. Phys. B 359-361, 986–993 (2005).

    ADS  Google Scholar 

  34. Amitsuka, H. et al. Pressure–temperature phase diagram of the heavy-electron superconductor URu2Si2. J. Magn. Magn. Mater. 310, 214–220 (2007).

    ADS  Google Scholar 

  35. Knafo, W. et al. Field-induced spin-density wave beyond hidden order in URu2Si2. Nat. Commun. 7, 13075 (2016).

    ADS  Google Scholar 

  36. Knafo, W. et al. URu2Si2 under intense magnetic fields: from hidden order to spin-density wave. Physica B 536, 457–460 (2018).

    ADS  Google Scholar 

  37. Aoki, D. et al. Field reentrance of the hidden order state of URu2Si2under pressure. J. Phys. Soc. Jpn 78, 053701 (2009).

    ADS  Google Scholar 

  38. Jo, Y. J. et al. Field-induced Fermi surface reconstruction and adiabatic continuity between antiferromagnetism and the hidden-order state in URu2Si2. Phys. Rev. Lett. 98, 166404 (2007).

    ADS  Google Scholar 

  39. Scheerer, G. W. et al. Interplay of magnetism, Fermi surface reconstructions, and hidden order in the heavy-fermion material URu2Si2. Phys. Rev. B 77, 115117 (2012).

    Google Scholar 

  40. Kim, K. H., Harrison, N., Jaime, M., Boebinger, G. S. & Mydosh, J. A. Magnetic field-induced quantum critical point and competing order parameters in URu2Si2. Phys. Rev. Lett. 91, 256401 (2003).

    ADS  Google Scholar 

  41. Pfleiderer, C., Mydosh, J. A. & Vojta, M. Pressure dependence of the magnetization of URu2Si2. Phys. Rev. B 74, 104412 (2006).

    ADS  Google Scholar 

  42. Aoki, D. et al. Field re-entrant hidden-order phase under pressure in URu2Si2. J. Phys. Condens. Matter 22, 164205 (2010).

    ADS  Google Scholar 

  43. Ran, S. et al. Phase diagram of URu2–xFexSi2 in high magnetic fields. Proc. Natl Acad. Sci. USA 114, 9826–9831 (2017).

    ADS  Google Scholar 

  44. Knafo, W. et al. Three-dimensional critical phase diagram of the Ising antiferromagnet CeRh2Si2 under intense magnetic field and pressure. Phys. Rev. B 95, 014411 (2017).

    ADS  Google Scholar 

  45. Aoki, D. et al. Decoupling between field-instabilities of antiferromagnetism and pseudo-metamagnetism in Rh-doped CeRu2Si2 Kondo lattice. J. Phys. Soc. Jpn 81, 034711 (2012).

    ADS  Google Scholar 

  46. Scheerer, G. W. et al. Fermi surface in the hidden-order state of URu2Si2 under intense pulsed magnetic fields up to 81 T. Phys. Rev. B 89, 165107 (2014).

    ADS  Google Scholar 

  47. Shishido, H. et al. Possible phase transition deep inside the hidden order phase of ultraclean URu2Si2. Phys. Rev. Lett. 102, 156403 (2009).

    ADS  Google Scholar 

  48. Harrison, N. et al. Magnetic field-tuned localization of the 5f-electrons in URu2Si2. Phys. Rev. B 88, 241108(R) (2013).

    ADS  Google Scholar 

  49. Aoki, D. et al. High-field Fermi surface properties in the low-carrier heavy-fermion compound URu2Si2. J. Phys. Soc. Jpn 81, 074715 (2012).

    ADS  Google Scholar 

  50. Flouquet, J. et al. Trends in heavy fermion matter. J. Phys. Conf. Ser. 273, 012001 (2011).

    Google Scholar 

  51. Villaume, A. et al. Signature of hidden order in heavy fermion superconductor URu2Si2: resonance at the wave vector Q0=(1,0,0). Phys. Rev. B 78, 012504 (2008).

    ADS  Google Scholar 

  52. Bareille, C. et al. Momentum-resolved hidden-order gap reveals symmetry breaking and origin of entropy loss in URu2Si2. Nat. Commun. 5, 4326 (2014).

    ADS  Google Scholar 

  53. Braithwaite, D. et al. Pressure cell for transport measurements under high pressure and low temperature in pulsed magnetic fields. Rev. Sci. Instrum. 87, 023907 (2016).

    ADS  Google Scholar 

  54. Settai, R. et al. Development of Bridgman-type pressure cell for pulsed high magnetic field. Rev. High Pressure Sci. Technol. 25, 325–333 (2015).

    Google Scholar 

Download references

Acknowledgements

We acknowledge J. Flouquet for discussions and critical reading of the paper, and S. Burdin for discussions. The work at the LNCMI was supported by the Programme Investissements d’ Avenir under project NEXTREME/NEXT (programme ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT). We acknowledge the programmes Propulse, Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers from JSPS (R2705) and KAKENHI (JP15H05882, JP15H05884, JP15K21732, JP19H00646, JP15H05745).

Author information

Authors and Affiliations

Authors

Contributions

Samples were grown by D.A. and G.L. They were characterized in zero and low fields by D.A., G.L. and G.K. Zero-field high-pressure experiments were performed by S.A. High-pressure experiments in pulsed magnetic field were performed by W.K., S.A. and D.B. Data were analysed by W.K. The paper was written by W.K. and D.B., with contributions and comments from all of the authors.

Corresponding author

Correspondence to W. Knafo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Sébastien Burdin, Neil Harrison and Liling Sun for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, discussion and refs. 55–57.

Source data

Source Data Fig. 1

(H,p,T) phase diagram data.

Source Data Fig. 2

ρ versus H data, T = 2.2 K, six pressures.

Source Data Fig. 3

ρ versus H data, various temperatures, six panels, one for each pressure.

Source Data Fig. 4

(H,T) phase diagram data, six panels, one for each pressure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knafo, W., Araki, S., Lapertot, G. et al. Destabilization of hidden order in URu2Si2 under magnetic field and pressure. Nat. Phys. 16, 942–948 (2020). https://doi.org/10.1038/s41567-020-0927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-0927-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing