Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deeply virtual Compton scattering off the neutron

Abstract

The three-dimensional structure of nucleons (protons and neutrons) is embedded in so-called generalized parton distributions, which are accessible from deeply virtual Compton scattering. In this process, a high-energy electron is scattered off a nucleon by exchanging a virtual photon. Then, a highly energetic real photon is emitted from one of the quarks inside the nucleon, which carries information on the quark’s transverse position and longitudinal momentum. By measuring the cross-section of deeply virtual Compton scattering, Compton form factors related to the generalized parton distributions can be extracted. Here, we report the observation of unpolarized deeply virtual Compton scattering off a deuterium target. From the measured photon-electroproduction cross-sections, we have extracted the cross-section of a quasifree neutron and a coherent deuteron. Due to the approximate isospin symmetry of quantum chromodynamics, we can determine the contributions from the different quark flavours to the helicity-conserved Compton form factors by combining our measurements with previous ones probing the proton’s internal structure. These results advance our understanding of the description of the nucleon structure, which is important to solve the proton spin puzzle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The handbag diagram for DVCS.
Fig. 2: Missing-mass-squared distributions.
Fig. 3: Beam-helicity-independent cross-sections.
Fig. 4: Neutron and deuteron cross-sections integrated over ϕ.
Fig. 5: Separation of the \(| {{\mathcal{T}}}_{\rm{DVCS}}^{n}{| }^{2}\) and \({{\mathcal{I}}}^{n}\) terms.
Fig. 6: Flavour separation of helicity-conserved CFFs.

Similar content being viewed by others

Data availability

Data that support the findings of this study are publicly available at https://userweb.jlab.org/~mazouz/NP/.

Code availability

The computer codes that support the plots within this paper and the findings of this study are available from M. Mazouz on request.

References

  1. Hofstadter, R. & McAllister, R. W. Electron scattering from the proton. Phys. Rev. 98, 217–218 (1955).

    ADS  Google Scholar 

  2. Taylor, R. E. Deep inelastic scattering: the early years. Rev. Mod. Phys. 63, 573–595 (1991).

    ADS  Google Scholar 

  3. Radyushkin, A. V. Nonforward parton distributions. Phys. Rev. D 56, 5524–5557 (1997).

    ADS  Google Scholar 

  4. Müller, D., Robaschik, D., Geyer, B., Dittes, F. M. & Horejsi, J. Wave functions, evolution equations and evolution kernels from light-ray operators of QCD. Fortschr. Phys. 42, 101–141 (1994).

    Google Scholar 

  5. Burkardt, M. Impact parameter space interpretation for generalized parton distributions. Int. J. Mod. Phys. A 18, 173–207 (2003).

    ADS  MATH  Google Scholar 

  6. Ji, X. Gauge invariant decomposition of nucleon spin. Phys. Rev. Lett. 78, 610–613 (1997).

    ADS  Google Scholar 

  7. Aidala, C. A., Bass, S. D., Hasch, D. & Mallot, G. K. The spin structure of the nucleon. Rev. Mod. Phys. 85, 655–691 (2013).

    ADS  Google Scholar 

  8. Hoodbhoy, P. & Ji, X. Helicity-flip off-forward parton distributions of the nucleon. Phys. Rev. D 58, 054006 (1998).

    ADS  Google Scholar 

  9. Diehl, M. Generalized parton distributions. Phys. Rep. 388, 41–277 (2003).

    ADS  Google Scholar 

  10. Collins, J. C., Frankfurt, L. & Strikman, M. Factorization for hard exclusive electroproduction of mesons in QCD. Phys. Rev. D 56, 2982–3006 (1997).

    ADS  Google Scholar 

  11. Ji, X. & Osborne, J. One-loop corrections and all order factorization in deeply virtual Compton scattering. Phys. Rev. D 58, 094018 (1998).

    ADS  Google Scholar 

  12. Defurne, M. et al. E00-110 experiment at Jefferson Lab Hall A: deeply virtual Compton scattering off the proton at 6 GeV. Phys. Rev. C 92, 055202 (2015).

    ADS  Google Scholar 

  13. Jo, H. S. et al. Cross sections for the exclusive photon electroproduction on the proton and generalized parton distributions. Phys. Rev. Lett. 115, 212003 (2015).

    ADS  Google Scholar 

  14. Belitsky, A. & Müller, D. Exclusive electroproduction revisited: treating kinematical effects. Phys. Rev. D 82, 074010 (2010).

    ADS  Google Scholar 

  15. Bacchetta, A., D’Alesio, U., Diehl, M. & Miller, C. A. Single-spin asymmetries: the Trento conventions. Phys. Rev. D 70, 117504 (2004).

    ADS  Google Scholar 

  16. Diehl, M., Gousset, T., Pire, B. & Ralston, J. P. Testing the handbag contribution to exclusive virtual Compton scattering. Phys. Lett. B 411, 193–202 (1997).

    ADS  Google Scholar 

  17. Defurne, M. et al. A glimpse of gluons through deeply virtual Compton scattering on the proton. Nat. Commun. 8, 1408 (2017).

    ADS  Google Scholar 

  18. Belitsky, A., Müller, D. & Ji, Y. Compton scattering: from deeply virtual to quasi-real. Nucl. Phys. B 878, 214–268 (2014).

    ADS  MathSciNet  MATH  Google Scholar 

  19. Airapetian, A. et al. Measurement of the beam spin azimuthal asymmetry associated with deeply-virtual Compton scattering. Phys. Rev. Lett. 87, 182001 (2001).

    ADS  Google Scholar 

  20. Stepanyan, S. et al. Observation of exclusive deeply virtual Compton scattering in polarized electron beam asymmetry measurements. Phys. Rev. Lett. 87, 182002 (2001).

    ADS  Google Scholar 

  21. Adloff, C. et al. Measurement of deeply virtual Compton scattering at HERA. Phys. Lett. B 517, 47–58 (2001).

    ADS  Google Scholar 

  22. Chekanov, S. et al. Measurement of deeply virtual Compton scattering at HERA. Phys. Lett. B 573, 46–62 (2003).

    ADS  Google Scholar 

  23. Aktas, A. et al. Measurement of deeply virtual Compton scattering at HERA. Eur. Phys. J. C 44, 1–11 (2005).

    Google Scholar 

  24. Chen, S. et al. Measurement of deeply virtual Compton scattering with a polarized proton target. Phys. Rev. Lett. 97, 072002 (2006).

    ADS  Google Scholar 

  25. Airapetian, A. et al. The beam-charge azimuthal asymmetry and deeply virtual Compton scattering. Phys. Rev. D 75, 011103 (2007).

    ADS  Google Scholar 

  26. Mazouz, M. et al. Deeply virtual Compton scattering off the neutron. Phys. Rev. Lett. 99, 242501 (2007).

    ADS  Google Scholar 

  27. Aaron, F. D. et al. Measurement of deeply virtual Compton scattering and its t-dependence at HERA. Phys. Lett. B 659, 796–806 (2008).

    ADS  Google Scholar 

  28. Girod, F. et al. Measurement of deeply virtual Compton scattering beam-spin asymmetries. Phys. Rev. Lett. 100, 162002 (2008).

    ADS  Google Scholar 

  29. Airapetian, A. et al. Measurement of azimuthal asymmetries with respect to both beam charge and transverse target polarization in exclusive electroproduction of real photons. J. High Energy Phys. 06, 066 (2008).

    Google Scholar 

  30. Chekanov, S. et al. Measurement of the Q 2, W and t dependences of deeply virtual Compton scattering at HERA. J. High Energy Phys. 05, 108 (2009).

    ADS  Google Scholar 

  31. Gavalian, G. et al. Beam spin asymmetries in deeply virtual Compton scattering (DVCS) with CLAS at 4.8 GeV. Phys. Rev. C 80, 035206 (2009).

    ADS  Google Scholar 

  32. Aaron, F. D. et al. Deeply virtual Compton scattering and its beam charge asymmetry in e ± p collisions at HERA. Phys. Lett. B 681, 391–399 (2009).

    ADS  Google Scholar 

  33. Airapetian, A. et al. Separation of contributions from deeply virtual Compton scattering and its interference with the Bethe–Heitler process in measurements on a hydrogen target. J. High Energy Phys. 11, 083 (2009).

    Google Scholar 

  34. Airapetian, A. et al. Exclusive leptoproduction of real photons on a longitudinally polarised hydrogen target. J. High Energy Phys. 06, 019 (2010).

    ADS  Google Scholar 

  35. Airapetian, A. et al. Measurement of double-spin asymmetries associated with deeply virtual Compton scattering on a transversely polarized hydrogen target. Phys. Lett. B 704, 15–23 (2011).

    ADS  Google Scholar 

  36. Airapetian, A. et al. Beam-helicity and beam-charge asymmetries associated with deeply virtual Compton scattering on the unpolarised proton. J. High Energy Phys. 07, 032 (2012).

    ADS  Google Scholar 

  37. Airapetian, A. et al. Beam-helicity asymmetry arising from deeply virtual Compton scattering measured with kinematically complete event reconstruction. J. High Energy Phys. 10, 042 (2012).

    ADS  Google Scholar 

  38. Hirlinger Saylor, N. et al. Measurement of unpolarized and polarized cross sections for deeply virtual Compton scattering on the proton at Jefferson Laboratory with CLAS. Phys. Rev. C 98, 045203 (2018).

    ADS  Google Scholar 

  39. Braun, V. M., Manashov, A. N., Müller, D. & Pirnay, B. M. Deeply virtual Compton scattering to the twist-four accuracy: impact of finite-t and target mass corrections. Phys. Rev. D 89, 074022 (2014).

    ADS  Google Scholar 

  40. Dulat, S. et al. New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D 93, 033006 (2016).

    ADS  Google Scholar 

  41. Maas, F. E. & Paschke, K. D. Strange nucleon form-factors. Prog. Part. Nucl. Phys. 95, 209–244 (2017).

    ADS  Google Scholar 

  42. Goeke, K. et al. Hard exclusive reactions and the structure of hadrons. Prog. Part. Nucl. Phys. 47, 401–515 (2001).

    ADS  Google Scholar 

  43. Mazouz, M. et al. Rosenbluth separation of the π 0 electroproduction cross section off the neutron. Phys. Rev. Lett. 118, 222002 (2017).

    ADS  Google Scholar 

  44. Alcorn, J. et al. Basic instrumentation for Hall A at Jefferson Lab. Nucl. Instrum. Methods A 522, 294–346 (2004).

    ADS  Google Scholar 

  45. Guichon, P. A. M., Mossé, L. & Vanderhaeghen, M. Pion production in deeply virtual Compton scattering. Phys. Rev. D 68, 034018 (2003).

    ADS  Google Scholar 

  46. Kirchner, A. & Müller, D. Deeply virtual Compton scattering off nuclei. Eur. Phys. J. C 32, 347–375 (2003).

    ADS  Google Scholar 

  47. Lacombe, M. et al. Parametrization of the Paris N-N potential. Phys. Rev. C21, 861–873 (1980).

    ADS  Google Scholar 

  48. Cano, F. & Pire, B. Deep electroproduction of photons and mesons on the deuteron. Eur. Phys. J. A 19, 423–438 (2004).

    ADS  Google Scholar 

  49. Vanderhaeghen, M., Guichon, P. A. M. & Guidal, M. Hard electroproduction of photons and mesons on the nucleon. Phys. Rev. Lett. 80, 5064–5067 (1998).

    ADS  Google Scholar 

  50. Vanderhaeghen, M., Guichon, P. A. M. & Guidal, M. Deeply virtual electroproduction of photons and mesons on the nucleon: leading order amplitudes and power corrections. Phys. Rev. D 60, 094017 (1999).

    ADS  Google Scholar 

  51. Goldstein, G. R., Gonzalez Hernandez, J. O. & Liuti, S. Flexible parametrization of generalized parton distributions from deeply virtual Compton scattering observables. Phys. Rev. D 84, 034007 (2011).

    ADS  Google Scholar 

  52. Goldstein, G. R., Gonzalez Hernandez, J. O. & Liuti, S. Flexible parametrization of generalized parton distributions: the chiral-odd sector. Phys. Rev. D 91, 114013 (2015).

    ADS  Google Scholar 

  53. Gonzalez-Hernandez, J. O., Liuti, S., Goldstein, G. R. & Kathuria, K. Interpretation of the flavor dependence of nucleon form factors in a generalized parton distribution model. Phys. Rev. C 88, 065206 (2013).

    ADS  Google Scholar 

  54. Mazouz, M. Energy calibration of laterally segmented electromagnetic calorimeters based on neutral pion detection. Nucl. Sci. Tech. 28, 155 (2017).

  55. Vanderhaeghen, M. et al. QED radiative corrections to virtual Compton scattering. Phys. Rev. C 62, 025501 (2000).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the essential work of the Jefferson Lab accelerator staff and the Hall A technical staff. This work was supported by the Department of Energy (DOE), the National Science Foundation, the French Centre National de la Recherche Scientifique, the Agence Nationale de la Recherche, the Commissariat à l’énergie atomique et aux énergies alternatives and P2IO Laboratory of Excellence. Jefferson Science Associates, LLC, operates Jefferson Lab for the US DOE under US DOE contract DE-AC05-060R23177.

Author information

Authors and Affiliations

Authors

Contributions

The Jefferson Lab Hall A Collaboration constructed and operated the experimental equipment used in this experiment. Data were taken by a large number of collaboration members. The authors who performed data analyses and Monte Carlo simulations were M. Benali, C.D., M. Mazouz and C.M.C. The main authors of this manuscript were M. Benali, M. Mazouz, C.M.C., C.H., J.R. and A.C. It was reviewed by the entire collaboration before publication, and all authors approved the final version of the manuscript.

Corresponding author

Correspondence to M. Benali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Fit results on the 2010 data of E07-007 and E08-025 experiments.

The plots show the helicity-independent (black) and helicity-dependent (blue) photon electroproduction cross-sections off proton (circles) and neutron (squares) from17 and the data reported herein. The error bars correspond to the quadratic sum of the standard deviation statistical and systematic uncertainties on the cross-sections. The specific kinematics are indicated in each plot. Solid lines show the results of the HT fit described in this work, whereas the dashed lines (almost indistinguishable from the solid lines) show the results of the NLO fit.

Extended Data Fig. 2 Fit results on the 2004 data of E00-110 and E03-106 experiments.

The plots show the helicity-independent (black) and helicity-dependent (blue) photon electroproduction cross-sections off proton (points) and neutron (squares) from12,26. The specific kinematics are indicated in each plot. Solid lines show the results of the HT fit described in this work, whereas the dashed lines (almost indistinguishable from the solid lines) show the results of the NLO fit. Neutron results in26 only contain the amplitude of the DVCS-BH interference term and its standard deviation uncertainty. Data points in this figure for that experiment are placed along the calculated cross-section, but without any spread around it.

Source data

Source Data Fig. 3

Table containing the data of Fig. 3f.

Source Data Fig. 4

Table containing the data of Fig. 4f.

Source Data Fig. 5

Table containing the data of Fig. 5f.

Source Data Fig. 6

Table containing the data of Fig. 6f.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benali, M., Desnault, C., Mazouz, M. et al. Deeply virtual Compton scattering off the neutron. Nat. Phys. 16, 191–198 (2020). https://doi.org/10.1038/s41567-019-0774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0774-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing