Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unconventional thermal metallic state of charge-neutral fermions in an insulator

Abstract

Quantum oscillations in transport and thermodynamic parameters at high magnetic fields are an unambiguous signature of the Fermi surface, the defining characteristic of a metal. Recent observations of quantum oscillations in insulating SmB6 and YbB12, therefore, have been a big surprise—despite the large charge gap inferred from the insulating behaviour of the resistivity, these compounds seemingly host a Fermi surface at high magnetic fields. However, the nature of the ground state in zero field has been little explored. Here, we report the use of low-temperature heat-transport measurements to discover gapless, itinerant, charge-neutral excitations in the ground state of YbB12. At zero field, sizeable linear temperature-dependent terms in the heat capacity and thermal conductivity are clearly resolved in the zero-temperature limit, indicating the presence of gapless fermionic excitations with an itinerant character. Remarkably, linear temperature-dependent thermal conductivity leads to a spectacular violation of the Wiedemann–Franz law: the Lorenz ratio is 104–105 times larger than that expected in conventional metals, indicating that YbB12 is a charge insulator and a thermal metal. Moreover, we find that these fermions couple to magnetic fields, despite their charge neutrality. Our findings expose novel quasiparticles in this unconventional quantum state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The resistivity of YbB12.
Fig. 2: The heat capacity of YbB12.
Fig. 3: The thermal conductivity of YbB12.
Fig. 4: The thermal Hall angle of YbB12.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Tsunetsugu, H., Sigrist, M. & Ueda, M. The ground-state phase diagram of the one-dimensional Kondo lattice model. Rev. Mod. Phys. 69, 809–863 (1997).

    Article  ADS  Google Scholar 

  2. Riseborough, P. S. Heavy fermion semiconductors. Adv. Phys. 49, 257–320 (2000).

    Article  ADS  Google Scholar 

  3. Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

    Article  ADS  Google Scholar 

  4. Weng, H., Zhao, J., Wang, Z., Fang, Z. & Dai, X. Topological crystalline Kondo insulator in mixed valence ytterbium borides. Phys. Rev. Lett. 112, 016403 (2014).

    Article  ADS  Google Scholar 

  5. Xu, N. et al. Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator. Nat. Commun. 5, 4566 (2014).

    Article  ADS  Google Scholar 

  6. Hagiwara, K. et al. Surface Kondo effect and non-trivial metallic state of the Kondo insulator YbB12. Nat. Commun. 7, 12690 (2016).

    Article  ADS  Google Scholar 

  7. Li, G. et al. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science 346, 1208–1212 (2014).

    Article  ADS  Google Scholar 

  8. Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).

    Article  ADS  Google Scholar 

  9. Hartstein, M. et al. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6. Nat. Phys. 14, 166–172 (2018).

    Article  Google Scholar 

  10. Xiang, Z. et al. Bulk rotational symmetry breaking in Kondo insulator SmB6. Phys. Rev. X 7, 031054 (2017).

    Google Scholar 

  11. Knolle, J. & Cooper, N. R. Quantum oscillations without a Fermi surface and the anomalous de Haas–van Alphen effect. Phys. Rev. Lett. 115, 146401 (2015).

    Article  ADS  Google Scholar 

  12. Knolle, J. & Cooper, N. R. Excitons in topological Kondo insulators: theory of thermodynamic and transport anomalies in SmB6. Phys. Rev. Lett. 118, 096604 (2017).

    Article  ADS  Google Scholar 

  13. Zhang, L., Song, X.-Y. & Wang, F. Quantum oscillation in narrow-gap topological insulators. Phys. Rev. Lett. 116, 046404 (2016).

    Article  ADS  Google Scholar 

  14. Baskaran, G. Majorana Fermi sea in insulating SmB6: a proposal and a theory of quantum oscillation in Kondo insulators. Preprint at https://arxiv.org/abs/1507.03477 (2015).

  15. Erten, O., Chang, P.-Y., Coleman, P. & Tsvelik, A. M. Skyrme insulators: insulators at the brink of superconductivity. Phys. Rev. Lett. 119, 057603 (2017).

    Article  ADS  Google Scholar 

  16. Chowdhury, D., Sodemann, I. & Sentil, T. Mixed-valence insulators with neutral Fermi-surfaces. Nat. Commun. 9, 1766 (2018).

    Article  ADS  Google Scholar 

  17. Sodemann, I., Chowdhury, D. & Sentil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018).

    Article  ADS  Google Scholar 

  18. Shen, H. & Fu, L. Quantum oscillation from in-gap states and non-Hermitian Landau level problem. Phys. Rev. Lett. 121, 026403 (2018).

    Article  ADS  Google Scholar 

  19. Yoshida, T., Peters, R. & Kawakami, N. Non-Hermitian perspective of the band structure in heavy-fermion systems. Phys. Rev. B 98, 035141 (2018).

    Article  ADS  Google Scholar 

  20. Anderson, P. W., Halperin, B. I. & Varma, C. M. Anomalous low-temperature thermal properties of glasses and spin glasses. Philos. Mag. 25, 1–9 (1972).

    Article  ADS  Google Scholar 

  21. Matsuda, Y., Izawa, K. & Vechter, I. Nodal structure of unconventional superconductors probed by angle resolved thermal transport measurements. J. Phys. Condens. Matter 18, R705–R752 (2006).

    Article  ADS  Google Scholar 

  22. Xu, Y. et al. Bulk Fermi surface of charge-neutral excitations in SmB6 or not: a heat-transport study. Phys. Rev. Lett. 116, 246403 (2016).

    Article  ADS  Google Scholar 

  23. Boulanger, M.-E. et al. Field-dependent heat transport in the Kondo insulator SmB6: phonons scattered by magnetic impurities. Phys. Rev. B 97, 245141 (2018).

    Article  ADS  Google Scholar 

  24. Fuhrman, W. T. et al. Interaction driven subgap spin exciton in the Kondo insulator SmB6. Phys. Rev. Lett. 114, 036401 (2015).

    Article  ADS  Google Scholar 

  25. Xiang, Z. et al. Quantum oscillations of electrical resistivity in an insulator. Science 362, 65–69 (2018).

    Article  ADS  Google Scholar 

  26. Mignot, J.-M. et al. Evidence for short-range antiferromagnetic fluctuations in Kondo-insulating YbB12. Phys. Rev. Lett. 94, 247204 (2005).

    Article  ADS  Google Scholar 

  27. Okawa, M. et al. Hybridization gap formation in the Kondo insulator YbB12 observed using time-resolved photoemission spectroscopy. Phys. Rev. B 92, 161108(R) (2015).

    Article  ADS  Google Scholar 

  28. Ikushima, K. et al. 171Yb NMR in the Kondo semiconductor YbB12. Physica B 281-282, 274–275 (2000).

    Article  ADS  Google Scholar 

  29. Yamaguchi, J. et al. Kondo lattice effects and the collapse of lattice coherence in Yb1−xLuxB12 studied by hard x-ray photoelectron spectroscopy. Phys. Rev. B 79, 125121 (2009).

    Article  ADS  Google Scholar 

  30. Utsumi, Y. et al. Bulk and surface electronic properties of SmB6: a hard X-ray photoelectron spectroscopy study. Phys. Rev. B 96, 155130 (2017).

    Article  ADS  Google Scholar 

  31. Cooley, J. C., Aronson, M. C., Fisk, Z. & Canfield, P. C. SmB6: Kondo insulator or exotic metal? Phys. Rev. Lett. 74, 1629–1632 (1995).

    Article  ADS  Google Scholar 

  32. Terashima, T. T. et al. Magnetization process of the Kondo insulator YbB12 in ultrahigh magnetic fields. J. Phys. Soc. Jpn 86, 054710 (2017).

    Article  ADS  Google Scholar 

  33. Nemkovski, K. S. et al. Lattice dynamics in the Kondo insulator YbB12. J. Solid State Chem. 179, 2895–2899 (2006).

    Article  ADS  Google Scholar 

  34. Czopnik, A. et al. Low-temperature thermal properties of yttrium and lutetium dodecaborides. J. Phys. Condens. Matter 17, 5971–5985 (2005).

    Article  ADS  Google Scholar 

  35. Grechnev, G. E. et al. Electronic structure and bulk properties of MB6 and MB12 borides. Low Temp. Phys. 34, 1167–1176 (2008).

    Article  Google Scholar 

  36. Singleton, J. Band Theory and Electronic Properties of Solids (Oxford University Press, 2002).

  37. Yamashita, M. et al. Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid. Science 328, 1246–1248 (2010).

    Article  ADS  Google Scholar 

  38. Yamashita, S., Yamamoto, T., Nakazawa, Y., Tamura, M. & Kato, R. Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements. Nat. Commun. 2, 275 (2011).

    Article  ADS  Google Scholar 

  39. Watanabe, D. et al. Novel Pauli-paramagnetic quantum phase in a Mott insulator. Nat. Commun. 3, 2082 (2012).

    Google Scholar 

  40. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  ADS  Google Scholar 

  41. Motrunich, O. I. Orbital magnetic field effects in spin liquid with spinon Fermi sea: possible application to κ-(ET)2Cu2(CN)3. Phys. Rev. B 73, 155115 (2006).

    Article  ADS  Google Scholar 

  42. Katsura, H., Nagaosa, N. & Lee, P. A. Theory of the thermal Hall effect in quantum magnets. Phys. Rev. Lett. 104, 066403 (2010).

    Article  ADS  Google Scholar 

  43. Watanabe, D. et al. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite. Proc. Natl Acad. Sci. USA 113, 8653–8657 (2016).

    Article  ADS  Google Scholar 

  44. Iga, F., Shimizu, N. & Takabatake, T. Single crystal growth and physical properties of Kondo insulator YbB12. J. Magn. Magn. Mater. 177-181, 337–338 (1998).

    Article  ADS  Google Scholar 

  45. Kohama, Y., Marcenat, C., Klein, T. & Jaime, M. AC measurement of heat capacity and magnetocaloric effect for pulsed magnetic fields. Rev. Sci. Instrum. 81, 104902 (2010).

    Article  ADS  Google Scholar 

  46. Taylor, O. J., Carrington, A. & Schlueter, J. A. Specific-heat measurements of the gap structure of the organic superconductors κ-(ET)2Cu[N(CN)2]Br and κ-(ET)2Cu(NCS)2. Phys. Rev. Lett. 99, 057001 (2007).

    Article  ADS  Google Scholar 

  47. Iga, F. et al. Kondo-semiconductor to Kondo-impurity transition in the heat capacity of Yb 1-xLuxB12. Physica B 259-261, 312–314 (1999).

    Article  ADS  Google Scholar 

  48. Li, D. et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 2934–2936 (2003).

    Article  ADS  Google Scholar 

  49. Tavakoli, A. et al. Universality of thermal transport in amorphous nanowires at low temperatures. Phys. Rev. B 95, 165411 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Behnia, D. Chowdhury, P. Coleman, J. Knolle, H. v. Löhneysen, E.-G. Moon, R. Peters, S. Sebastian, T. Senthil and L. Taillefer for fruitful discussions. This work was supported by Grants-in-Aid for Scientific Research (KAKENHI) (nos. 25220710, 15H02106, 15H03688, 16K13837, 18H01177, 18H01180 and 18H05227) and on Innovative Areas ‘Topological Material Science’ (no. 15H05852) from the Japan Society for the Promotion of Science (JSPS). This work at Michigan is mainly supported by the Office of Naval Research through the Young Investigator Prize under Award No. N00014-15-1-2382 (electrical transport characterization), by the National Science Foundation under Award No. DMR-1707620 (magnetization measurement) and by the National Science Foundation Major Research Instrumentation award under No. DMR-1428226 (the equipment of the electrical transport characterizations). The development of the torque magnetometry technique in intense magnetic fields was supported by the Department of Energy under Award No. DE-SC0008110. A portion of this work was performed at the NHMFL, which is supported by National Science Foundation Cooperative Agreement No. DMR-1644779, the Department of Energy and the State of Florida. J.S. thanks the Department of Energy for support from the BES programme ‘Science in 100 T’. The experiment at the NHMFL is funded in part by a QuantEmX grant from ICAM and the Gordon and Betty Moore Foundation through grant GBMF5305 to Z.X., T.A., L.C., C.T. and L.L. We are grateful for the assistance of T. Murphy, H. Baek, G. Jones, F. Balakirev, R. McDonald, J. Betts and J.-H. Park of the NHMFL.

Author information

Authors and Affiliations

Authors

Contributions

F.I. grew the high-quality single-crystalline samples. Y.S., Y.K., S.K. and H.M. performed the thermal transport measurements. T.T., S.K., O.T. and Y.Mizukami performed the heat capacity measurements. Z.X., L.C, T.A., C.T., J.S. and L.L. performed the high-field resistivity measurements. Y.S., Z.X., Y.K., T.T., S.K., H.M., Y.Mizukami, T.S., L.L. and Y.Matsuda analysed the data. Y.S., Y.K., T.S., J.S., L.L. and Y.Matsuda prepared the manuscript.

Corresponding authors

Correspondence to Lu Li or Y. Matsuda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, Y., Xiang, Z., Kasahara, Y. et al. Unconventional thermal metallic state of charge-neutral fermions in an insulator. Nat. Phys. 15, 954–959 (2019). https://doi.org/10.1038/s41567-019-0552-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0552-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing