Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum stochastic resonance in an a.c.-driven single-electron quantum dot

Abstract

In stochastic resonance, the combination of a weak signal with noise leads to its amplification and optimization1. This phenomenon has been observed in several systems in contexts ranging from palaeoclimatology, biology, medicine, sociology and economics to physics1,2,3,4,5,6,7,8,9. In all these cases, the systems were either operating in the presence of thermal noise or were exposed to external classical noise sources. For quantum-mechanical systems, it has been theoretically predicted that intrinsic fluctuations lead to stochastic resonance as well, a phenomenon referred to as quantum stochastic resonance1,10,11, but this has not been reported experimentally so far. Here we demonstrate tunnelling-controlled quantum stochastic resonance in the a.c.-driven charging and discharging of single electrons on a quantum dot. By analysing the counting statistics12,13,14,15,16, we demonstrate that synchronization between the sequential tunnelling processes and a periodic driving signal passes through an optimum, irrespective of whether the external frequency or the internal tunnel coupling is tuned.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up, device operation and statistical analysis.
Fig. 2: Frequency-dependent stochastic resonance.
Fig. 3: Temporal modulation of the tunnelling process.
Fig. 4: Tunnel coupling-dependent stochastic resonance.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon request.

References

  1. Gammaitoni, L., Hänggi, P., Jung, P. & Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 70, 223–288 (1998).

    Article  ADS  Google Scholar 

  2. Lee, I. Y., Liu, X. L., Kosko, B. & Zhou, C. W. Nanosignal processing: stochastic resonance in carbon nanotubes that detect subthreshold signals. Nano Lett. 3, 1683–1686 (2003).

    Article  ADS  Google Scholar 

  3. Badzey, R. L. & Mohanty, P. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance. Nature 437, 995–998 (2005).

    Article  ADS  Google Scholar 

  4. Nishiguchi, K. & Fujiwara, A. Detecting signals buried in noise via nanowire transistors using stochastic resonance. Appl. Phys. Lett. 101, 193108 (2012).

    Article  ADS  Google Scholar 

  5. Venstra, W. J., Westra, H. J. R. & van der Zant, H. S. J. Stochastic switching of cantilever motion. Nat. Commun. 4, 2624 (2013).

    Article  ADS  Google Scholar 

  6. Abbaspour, H., Trebaol, S., Morier-Genoud, F., Portella-Oberli, M. T. & Deveaud, B. Stochastic resonance in collective exciton–polariton excitations inside a GaAs microcavity. Phys. Rev. Lett. 113, 057401 (2014).

    Article  ADS  Google Scholar 

  7. Sun, G. et al. Detection of small single-cycle signals by stochastic resonance using a bistable superconducting quantum interference devices. Appl. Phys. Lett. 106, 172602 (2015).

    Article  ADS  Google Scholar 

  8. Stroescu, I., Hume, D. B. & Oberthaler, M. K. Dissipative double-well potential for cold atoms: kramers rate and stochastic resonance. Phys. Rev. Lett. 117, 243005 (2016).

    Article  ADS  Google Scholar 

  9. Monifi, F. et al. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photon. 10, 399–405 (2016).

    Article  ADS  Google Scholar 

  10. Löfstedt, R. & Coppersmith, S. N. Quantum stochastic resonance. Phys. Rev. Lett. 72, 1947–1950 (1994).

    Article  ADS  Google Scholar 

  11. Grifoni, M. & Hänggi, P. Coherent and incoherent quantum stochastic resonance. Phys. Rev. Lett. 76, 1611–1614 (1996).

    Article  ADS  Google Scholar 

  12. Callenbach, L., Hänggi, P., Linz, S. J., Freund, J. A. & Schimansky-Geier, L. Oscillatory systems driven by noise: frequency and phase synchronization. Phys. Rev. E 65, 051110 (2002).

    Article  ADS  Google Scholar 

  13. Talkner, P. Statistics of entrance times. Physica A 325, 124–135 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  14. Talkner, P., Machura, Ł., Schindler, M., Hänggi, P. & Łuczka, J. Statistics of transition times, phase diffusion and synchronization in periodically driven bistable systems. New J. Phys. 7, 14 (2005).

    Article  Google Scholar 

  15. Gustavsson, S. et al. Counting statistics of single-electron transport in a quantum dot. Phys. Rev. Lett. 96, 076605 (2006).

    Article  ADS  Google Scholar 

  16. Wagner, T. et al. Strong suppression of shot noise in a feedback-controlled single-electron transistor. Nat. Nanotechnol. 12, 218–222 (2017).

    Article  ADS  Google Scholar 

  17. Kouwenhoven, L. P., Austing, D. G. & Tarucha, S. Few-electron quantum dots. Rep. Prog. Phys. 64, 701–736 (2001).

    Article  ADS  Google Scholar 

  18. Kouwenhoven, L. P., Johnson, A. T., van der Vaart, N. C., Harmans, C. J. P. M. & Foxon, C. T. Quantized current in a quantum-dot turnstile using oscillating tunnel barriers. Phys. Rev. Lett. 67, 1626–1629 (1991).

    Article  ADS  Google Scholar 

  19. Platonov, S. et al. Lissajous rocking ratchet: realization in a semiconductor quantum dot. Phys. Rev. Lett. 115, 106801 (2015).

    Article  ADS  Google Scholar 

  20. Blumenthal, M. D. et al. Gigahertz quantized charge pumping. Nat. Phys. 3, 343–347 (2007).

    Article  Google Scholar 

  21. Pekola, J. P. et al. Single-electron current sources: toward a refined definition of the ampere. Rev. Mod. Phys. 85, 1421–1472 (2013).

    Article  ADS  Google Scholar 

  22. Shulgin, B., Neiman, A. & Anishchenko, V. Mean switching frequency locking in stochastic bistable systems driven by a periodic force. Phys. Rev. Lett. 75, 4157–4160 (1995).

    Article  ADS  Google Scholar 

  23. Burk, H., de Jong, M. J. M. & Schönberger, C. Shot-noise in the single-electron regime. Phys. Rev. Lett. 75, 1610–1613 (1995).

    Article  ADS  Google Scholar 

  24. Pekola, J. P. Towards quantum thermodynamics in electronic circuits. Nat. Phys. 11, 118–123 (2015).

    Article  Google Scholar 

  25. Féve, G. et al. An on-demand coherent single-electron source. Science 316, 1169–1172 (2007).

    Article  ADS  Google Scholar 

  26. Albert, M., Flindt, C. & Büttiker, M. Distributions of waiting times of dynamic single-electron emitters. Phys. Rev. Lett. 107, 086805 (2011).

    Article  ADS  Google Scholar 

  27. Mozyrsky, D., Martin, I. & Hastings, M. B. Quantum-limited sensitivity of single-electron-transistor-based displacement detectors. Phys. Rev. Lett. 92, 018303 (2004).

    Article  ADS  Google Scholar 

  28. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    Article  ADS  Google Scholar 

  29. Bonet, E., Deshmukh, M. M. & Ralph, D. C. Solving rate equations for electron tunneling via discrete quantum states. Phys. Rev. B 65, 045317 (2002).

    Article  ADS  Google Scholar 

  30. Hofmann, A. et al. Measuring the degeneracy of discrete energy levels using a GaAs/AlGaAs quantum dot. Phys. Rev. Lett. 117, 206803 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Research Training Group 1991 (DFG), the School for Contacts in Nanosystems (NTH), the Center for Quantum Engineering and Space-Time Research (QUEST), the Laboratory for Nano and Quantum Engineering (LNQE) and the ‘Fundamentals of Physics and Metrology’ initiative (T.W, J.C.B., E.R. and R.J.H.).

Author information

Authors and Affiliations

Authors

Contributions

T.W. carried out the experiments, analysed the data and wrote the manuscript. J.C.B. and T.W. fabricated the device. E.P.R. grew the wafer material. P.T. and P.H. provided theory support. T.W., P.T., P.H. and R.J.H discussed the results. R.J.H. supervised the research. All authors contributed to editing the manuscript.

Corresponding author

Correspondence to Timo Wagner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Physics thanks Christian Flindt and the other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Methods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, T., Talkner, P., Bayer, J.C. et al. Quantum stochastic resonance in an a.c.-driven single-electron quantum dot. Nat. Phys. 15, 330–334 (2019). https://doi.org/10.1038/s41567-018-0412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0412-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing