Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plasmonic dynamics measured with frequency-comb-referenced phase spectroscopy

Abstract

The strong confinement of surface plasmons’ optical fields at metal surfaces makes them highly sensitive to the structural shape and refractive index change of target biological1,2, chemical3,4 or atomic species5. This has made surface plasmon resonance a widely applicable sensing technique. Plasmonic metrology is primarily based on the spectral shift of the scattering intensity spectrum. Although broadband phase spectra are known to provide richer information on target samples as opposed to intensity spectra, direct acquisition of broadband phase spectra in plasmonics has been made difficult by the lack of highly stabilized light sources. Here, we demonstrate that frequency-comb-referenced phase spectroscopy provides high speed, high resolution, and high linearity with respect to plasmonic rulers, with direct traceability to a time standard. As a demonstration, we measure the 1.94 Å dynamic motion of a pair of nanoholes with a resolution of 1.67 pm. The interaction through the propagation of the plasmonic field is enhanced by a factor of 155 compared to the physical sample length. Our realization of a fast and robust plasmonic ruler with picometre resolution makes it possible to obtain high-precision plasmonic phase spectroscopy for in-depth analysis of the dynamics of samples in nanoscopic volumes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FCR plasmonic phase spectroscopy.
Fig. 2: Plasmonic sample design, development, and characterization.
Fig. 3: FCR differential plasmonic phase spectroscopy.
Fig. 4: Precision measurement of the sub-nanometre dynamic motion of a plasmonic sample.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  ADS  Google Scholar 

  2. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    Article  ADS  Google Scholar 

  3. Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    Article  ADS  Google Scholar 

  4. Zhang, Y. et al. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. 5, 4424 (2014).

    Article  ADS  Google Scholar 

  5. Stern, L., Grajower, M. & Levy, U. Fano resonances and all-optical switching in a resonantly coupled plasmonic-atomic system. Nat. Commun. 5, 4865 (2014).

    Article  ADS  Google Scholar 

  6. Novotny, L. & Van Hulst, N. Antennas for light. Nat. Photon. 5, 83–90 (2011).

    Article  ADS  Google Scholar 

  7. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012).

    Article  ADS  Google Scholar 

  8. Mühlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  ADS  Google Scholar 

  9. Savage, K. V. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012).

    Article  ADS  Google Scholar 

  10. Sönnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741–745 (2005).

    Article  Google Scholar 

  11. Liu, G. L. et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nat. Nanotech. 1, 47–52 (2006).

    Article  ADS  Google Scholar 

  12. Liu, N., Hentschel, M., Weiss, T., Alivisatos, A. P. & Giessen, H. Three-dimensional plasmon rulers. Science 332, 407–1410 (2011).

    Article  Google Scholar 

  13. Giorgetta, F. R. et al. Broadband phase spectroscopy over turbulent air paths. Phys. Rev. Lett. 115, 103901 (2015).

    Article  ADS  Google Scholar 

  14. Mandon, J., Guelachvili, G. & Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nat. Photon. 3, 99–102 (2009).

    Article  ADS  Google Scholar 

  15. Otto, L. M., Mohr, D. A., Johnson, T. W., Oh, S. H. & Lindquist, N. C. Polarization interferometry for real-time spectroscopic plasmonic sensing. Nanoscale 7, 4226–4233 (2015).

    Article  ADS  Google Scholar 

  16. Gao, Y., Gan, Q., Xin, Z., Cheng, X. & Bartoli, F. J. Plasmonic Mach–Zehnder interferometer for ultrasensitive on-chip biosensing. ACS Nano 5, 9836–9844 (2011).

    Article  Google Scholar 

  17. Morrill, D., Li, D. & Pacifici, D. Measuring subwavelength spatial coherence with plasmonic interferometry. Nat. Photon. 10, 681–687 (2016).

    Article  ADS  Google Scholar 

  18. Hänsch, T. W. Nobel Lecture: Passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

    Article  ADS  Google Scholar 

  19. Hall, J. L. Nobel Lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279–1295 (2006).

    Article  ADS  Google Scholar 

  20. Newbury, N. R. Searching for applications with a fine-tooth comb. Nat. Photon. 5, 186–188 (2011).

    Article  ADS  Google Scholar 

  21. Steinmetz, T. et al. Laser frequency combs for astronomical observations. Science 321, 1335–1337 (2008).

    Article  ADS  Google Scholar 

  22. Predehl, K. et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 336, 441–444 (2012).

    Article  ADS  Google Scholar 

  23. Lee, J., Kim, Y.-J., Lee, K., Lee, S. & Kim, S.-W. Time-of-flight measurement with femtosecond light pulses. Nat. Photon. 4, 716–720 (2010).

    Article  ADS  Google Scholar 

  24. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    Article  ADS  Google Scholar 

  25. Geng, X. T. et al. Frequency comb transferred by surface plasmon resonance. Nat. Commun. 7, 10685 (2016).

    Article  ADS  Google Scholar 

  26. Ebbesen, T. W., Lezec, H. J., Chaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  ADS  Google Scholar 

  27. Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).

    Article  ADS  Google Scholar 

  28. Edlén, B. The refractive index of air. Metrologia 2, 71–80 (1966).

    Article  ADS  Google Scholar 

  29. Ciddor, P. E. Refractive index of air: new equations for the visible and near infrared. Appl. Opt. 35, 1566–1573 (1996).

    Article  ADS  Google Scholar 

  30. Nix, F. C. & MacNair, D. The thermal expansion of pure metals: copper, gold, aluminum, nickel, and iron. Phys. Rev. 60, 597–605 (1941).

    Article  ADS  Google Scholar 

  31. Barnes, J. A. et al. Characterization of frequency stability. IEEE Trans. Instr. Meas. 1001, 105–120 (1971).

    Article  Google Scholar 

  32. Celik, M., Hamid, R., Kuetgens, U. & Yacoot, A. Picometre displacement measurements using a differential Fabry–Pérot optical interferometer and an X-ray interferometer. Meas. Sci. Technol. 23, 085901 (2012).

    Article  ADS  Google Scholar 

  33. Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    Article  ADS  Google Scholar 

  34. Bethe, H. A. Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944).

    Article  ADS  MathSciNet  Google Scholar 

  35. Yacoot, A. & Cross, N. Measurement of picometre non-linearity in an optical grating encoder using X-ray interferometry. Meas. Sci. Technol. 14, 148–152 (2002).

    Article  ADS  Google Scholar 

  36. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  37. Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013).

    Article  ADS  Google Scholar 

  38. Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

    Article  Google Scholar 

  39. Zhu, W. et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7, 1495 (2016).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by an NRF Fellowship (NRF-NRFF2015-02) from the Singapore National Research Foundation, an AcRF Tier 1 Grant (RG180/160) from the Singapore Ministry of Education. S.K. acknowledges financial support from the Creative Materials Discovery Program (NRF-2017M3D1A1039287) and the Basic Research Lab Program (NRF-2018R1A4A1025623) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning. D.K. acknowledges financial support from the Max Planck POSTECH/KOREA Research Initiative Program (2016K1A4A4A01922028).

Author information

Authors and Affiliations

Authors

Contributions

The project was planned and overseen by S.K. and Y.-J.K. Plasmonic samples were designed, prepared and characterized by S.C., D.K. and S.K. Frequency-comb-referenced plasmonic spectroscopic experiments were performed by N.D.A., B.J.C and Y.-J.K. Data were analysed by N.D.A., B.J.C., S.K. and Y.-J.K. All authors contributed to the manuscript preparation.

Corresponding authors

Correspondence to Seungchul Kim or Young-Jin Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

10 chapters, 13 figures, 11 references, 2 tables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh, N.D., Chun, B.J., Choi, S. et al. Plasmonic dynamics measured with frequency-comb-referenced phase spectroscopy. Nature Phys 15, 132–137 (2019). https://doi.org/10.1038/s41567-018-0330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0330-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing