Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Routing the emission of a near-surface light source by a magnetic field

A Publisher Correction to this article was published on 04 September 2018

This article has been updated

Abstract

Magneto-optical phenomena such as the Faraday and Kerr effects play a central role in controlling the polarization and intensity of optical fields propagating through a medium. Intensity effects in which the direction of light emission depends on the orientation of the external magnetic field are of particular interest, as they can be harnessed for routing light. Effects known so far for accomplishing such routing all control light emission along the axis parallel to the magnetic field. Here we report a new class of emission phenomena where directionality is established perpendicular to the externally applied magnetic field for light sources located in the vicinity of a surface. As a proof of principle for this effect, which we call transverse magnetic routing of light emission, we demonstrate the routing of emission for excitons in a diluted-magnetic-semiconductor quantum well. In hybrid plasmonic semiconductor structures, we observe significantly enhanced directionality of up to 60%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exciton-mediated optical spin fluxes routed by magnetic field.
Fig. 2: Device architecture.
Fig. 3: Demonstration of transverse magnetic routing of light emission (TMRLE).
Fig. 4: TMRLE for different grating periods and strongly polarized excitons.

Similar content being viewed by others

Change history

  • 04 September 2018

    In the version of this Article originally published, the expression for Pc was missing a division slash; it should have read Pc = ±2dydz/(dy2 + dz2) ≈ ±2/3Δh,F/Δ1h. Also, affiliation 5 was missing ‘Institute of Physics’; it should have read ‘International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland’. These issues have now been corrected.

References

  1. Benson, O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480, 193–199 (2011).

    Article  ADS  Google Scholar 

  2. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article  ADS  Google Scholar 

  3. Temnov, V. V. et al. Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nat. Photon. 4, 107–111 (2010).

    Article  ADS  Google Scholar 

  4. Akimov, I. A. et al. Hybrid structures of magnetic semiconductors and plasmonic crystals: A novel concept for magneto-optical devices. J. Opt. Soc. Am. B 29, A103–A118 (2012).

    Article  Google Scholar 

  5. Armelles, G., Cebollada, A., Garca-Martn, A. & González, M. U. Magnetoplasmonics: Combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 1, 10–35 (2013).

    Article  Google Scholar 

  6. Bossini, D., Belotelov, V. I., Zvezdin, A. K., Kalish, A. N. & Kimel, A. V. Magnetoplasmonics and femtosecond optomagnetism at the nanoscale. ACS Photon. 3, 1385–1400 (2016).

    Article  Google Scholar 

  7. Zvezdin, A. & Kotov, V. Modern Magnetooptics and Magnetooptical Materials (IOP, Bristol & Philadelphia, 1997).

    Google Scholar 

  8. Levy, M., Baryshev, A. V. & Inoue, M. (eds) Magnetophotonics: From theory to applications (Springer, Berlin, Heidelberg, 2013).

  9. Belotelov, V. I. et al. Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat. Nanotech. 6, 370–376 (2011).

    Article  ADS  Google Scholar 

  10. Chin, J. Y. et al. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nat. Commun. 4, 1599 (2013).

    Article  Google Scholar 

  11. Kreilkamp, L. E. et al. Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect. Phys. Rev. X 3, 041019 (2013).

    Google Scholar 

  12. Floess, D. et al. Plasmonic analog of electromagnetically induced absorption leads to giant thin film Faraday rotation of 14°. Phys. Rev. X 7, 021048 (2017).

    Google Scholar 

  13. Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    Article  ADS  Google Scholar 

  14. Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015).

    Google Scholar 

  15. Leyder, C. et al. Observation of the optical spin Hall effect. Nat. Phys. 3, 628–631 (2007).

    Article  Google Scholar 

  16. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  ADS  Google Scholar 

  17. Rodríguez-Fortuño, F. J., Engheta, N., Martínez, A. & Zayats, A. V. Lateral forces on circularly polarizable particles near a surface. Nat. Commun. 6, 8799 (2015).

    Article  ADS  Google Scholar 

  18. Kapitanova, P. V. et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat. Commun. 5, 3226 (2014).

    Article  Google Scholar 

  19. Aiello, A., Banzer, P., Neugebauer, M. & Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photon. 9, 789–795 (2015).

    Article  ADS  Google Scholar 

  20. Junge, C., O’Shea, D., Volz, J. & Rauschenbeutel, A. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, 213604 (2013).

    Article  ADS  Google Scholar 

  21. Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014).

    Article  ADS  Google Scholar 

  22. Luxmoore, I. J. et al. Interfacing spins in an InGaAs quantum dot to a semiconductor-waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013).

    Article  ADS  Google Scholar 

  23. Söllner, I. et al. Deterministic photon emitter coupling in chiral photonic circuits. Nat. Nanotech 10, 775–778 (2015).

    Article  ADS  Google Scholar 

  24. Coles, R. J. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2016).

    Article  ADS  Google Scholar 

  25. Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013).

    Article  ADS  Google Scholar 

  26. Rodrguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013).

    Article  ADS  Google Scholar 

  27. Bauer, T., Orlov, S., Peschel, U., Banzer, P. & Leuchs, G. Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams. Nat. Photon. 8, 23–27 (2013).

    Article  ADS  Google Scholar 

  28. O’Connor, D., Ginzburg, P., Rodríguez-Fortuño, F. J., Wurtz, G. A. & Zayats, A. V. Spin–orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun. 5, 5327 (2014).

    Article  ADS  Google Scholar 

  29. Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin–orbit interaction of light. Science 346, 67–71 (2014).

    Article  ADS  Google Scholar 

  30. Rodrguez-Fortuño, F. J., Barber-Sanz, I., Puerto, D., Griol, A. & Martnez, A. Resolving light handedness with an on-chip silicon microdisk. ACS Photon. 1, 762–767 (2014).

    Article  Google Scholar 

  31. Lefier, Y. & Grosjean, T. Unidirectional sub-diffraction waveguiding based on optical spin–orbit coupling in subwavelength plasmonic waveguides. Opt. Lett. 40, 2890–2893 (2015).

    Article  ADS  Google Scholar 

  32. Sinev, I. S. et al. Chirality driven by magnetic dipole response for demultiplexing of surface waves. Laser Photon. Rev. 11, 1700168 (2017).

    Article  ADS  Google Scholar 

  33. Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988).

    Article  ADS  Google Scholar 

  34. Gaj, J. A. & Kossut, J. Introduction to the Physics of Diluted Magnetic Semiconductors (Springer, Berlin, Heidelberg, 2010).

  35. Kuhn-Heinrich, B., Ossau, W., Bangert, E., Waag, A. & Landwehr, G. Zeeman pattern of semimagnetic (CdMn)Te/(CdMg)Te quantum wells in inplane magnetic fields. Solid State Commun. 91, 413–418 (1994).

    Article  ADS  Google Scholar 

  36. Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  37. Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    Article  Google Scholar 

  38. Whittaker, D. M. & Culshaw, I. S. Scattering-matrix treatment of patterned multilayer photonic structures. Phys. Rev. B 60, 2610–2618 (1999).

    Article  ADS  Google Scholar 

  39. Li, L. Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc. Am. A. 13, 1870–1876 (1996).

    Article  ADS  Google Scholar 

  40. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

  41. Andre, R. & Dang, L. S. Low-temperature refractive indices of Cd1−xMnxTe and Cd1−xMgxTe. J. Appl. Phys. 82, 5086–5089 (1997).

    Article  ADS  Google Scholar 

  42. Aspnes, D. E., Kelso, S. M., Logan, R. A. & Bhat, R. Optical properties of AlxGa1−xAs. J. Appl. Phys. 60, 754–767 (1986).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. M. Glazov, E. L. Ivchenko, V. L. Korenev, I. V. Iorsh and A. K. Samusev for useful discussions. We acknowledge the financial support by the Deutsche Forschungsgemeinschaft through the International Collaborative Research Centre 160 (Project C5). A.N.P. acknowledges the partial financial support from the Russian Foundation for Basic Research grants no. 15-52-12012-NNIO_a and 15-52-12011-NNIO_a and the “Basis” Foundation. M.B. acknowledges support by RF Government grant no. 14.Z50.31.0021. The research in Poland was partially supported by the National Science Centre (Poland) through grant nos DEC-2012/06/A/ST3/00247 and DEC-2014/14/M/ST3/00484, as well as by the Foundation for Polish Science through the IRA Programme co-financed by EU within SG OP.

Author information

Authors and Affiliations

Authors

Contributions

F.S., I.A.A., V.F.S, L.K. and L.E.K. performed the experiments and analysed the data. A.N.P. developed the theoretical model. L.V.L. and R.J. carried out electron beam lithography and lift-off processing for plasmonic gratings. G.K., M.W. and T.W. fabricated the semiconductor samples. F.S., A.N.P, I.A.A., D.R.Y. and M.B. conceived the idea for the experiment and co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to A. N. Poddubny or I. A. Akimov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

14 pages, 6 figures, 10 references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spitzer, F., Poddubny, A.N., Akimov, I.A. et al. Routing the emission of a near-surface light source by a magnetic field. Nature Phys 14, 1043–1048 (2018). https://doi.org/10.1038/s41567-018-0232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0232-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing