Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Doping the holographic Mott insulator

Abstract

Mott insulators form because of strong electron repulsions and are at the heart of strongly correlated electron physics. Conventionally these are understood as classical ‘traffic jams’ of electrons described by a short-ranged entangled product ground state. Exploiting the holographic duality, which maps the physics of densely entangled matter onto gravitational black hole physics, we show how Mott-like insulators can be constructed departing from entangled non-Fermi liquid metallic states, such as the strange metals found in cuprate superconductors. These ‘entangled Mott insulators’ have traits in common with the ‘classical’ Mott insulators, such as the formation of a Mott gap in the optical conductivity, super-exchange-like interactions and the formation of ‘stripes’ upon doping. They also exhibit new properties: the ordering wavevectors are detached from the number of electrons in the unit cell, and the d.c. resistivity diverges algebraically instead of exponentially as a function of temperature. These results may shed light on the mysterious ordering phenomena observed in underdoped cuprates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of the holographic Mott insulator.
Fig. 2: Holographic renormalization group pattern.
Fig. 3: Doped states.
Fig. 4: Discommensurations.
Fig. 5: The holographic Mott insulator’s d.c. resistivity.

Similar content being viewed by others

References

  1. Zaanen, J., Sawatzky, G. & Allen, J. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985).

    Article  ADS  Google Scholar 

  2. Phillips, P. Colloquium: Identifying the propagating charge modes in doped Mott insulators. Rev. Mod. Phys. 82, 1719–1742 (2010).

    Article  ADS  Google Scholar 

  3. Fradkin, E. Field Theories of Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 2013).

  4. Wen, X.-G. Quantum Field Theory of Many-Body Systems: from the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, Oxford, 2004).

  5. Zaanen, J., Krueger, F., She, J., Sadri, D. & Mukhin, S. Pacifying the Fermi-liquid: battling the devious fermion signs. Iran. J. Phys. Res. 8, 111 (2008).

    Google Scholar 

  6. Zaanen, J., Sun, Y.-W., Liu, Y. & Schalm, K. Holographic Duality in Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 2015).

  7. Keimer, B., Kivelson, S., Norman, M., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  Google Scholar 

  8. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015).

    Article  ADS  Google Scholar 

  9. Mesaros, A. et al. Commensurate 4a0-period charge density modulations throughout the Bi2Sr2CaCu2O8+x pseudogap regime. Proc. Natl Acad. Sci. USA 113, 12661–12666 (2016).

    Article  Google Scholar 

  10. Ammon, M. & Erdmenger, J. Gauge/Gravity Duality: Foundations and Applications (Cambridge Univ. Press, Cambridge, 2015).

  11. Faulkner, T., Iqbal, N., Liu, H., McGreevy, J. & Vegh, D. Strange metal transport realized by gauge/gravity duality. Science 329, 1043–1047 (2010).

    Article  ADS  Google Scholar 

  12. Iqbal, N., Liu, H. & Mezei, M. in String Theory and Its Applications (eds Dine, M., Banks, T. & Sachdev, S.) 707–815 (World Scientific, Singapore, 2012).

  13. Policastro, G., Son, D. T. & Starinets, A. O. The shear viscosity of strongly coupled N = 4 supersymmetric Yang–Mills plasma. Phys. Rev. Lett. 87, 081601 (2001).

    Article  ADS  Google Scholar 

  14. Hartnoll, S. A., Lucas, A. & Sachdev, S. Holographic Quantum Matter (MIT Press, Cambridge, MA, 2018).

  15. Zaanen, J. & Sawatzky, G. Systematics in band gaps and optical spectra of 3D transition metal compounds. J. Solid State Chem. 88, 8–27 (1990).

    Article  ADS  Google Scholar 

  16. Rozenberg, M. et al. Optical conductivity in Mott–Hubbard systems. Phys. Rev. Lett. 75, 105–108 (1995).

    Article  ADS  Google Scholar 

  17. Anderson, P. Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79, 350–356 (1950).

    Article  ADS  Google Scholar 

  18. Zaanen, J. & Sawatzky, G. The electronic structure and superexchange interactions in transition-metal compounds. Can. J. Phys. 65, 1262–1271 (1987).

    Article  ADS  Google Scholar 

  19. Zaanen, J. & Gunnarsson, O. Charged magnetic domain lines and the magnetism of high-T c oxides. Phys. Rev. B 40, 7391–7394 (1989).

    Article  ADS  Google Scholar 

  20. Tranquada, J., Sternlieb, B., Axe, J., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  21. Vojta, M. Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity. Adv. Phys. 58, 699–820 (2009).

    Article  ADS  Google Scholar 

  22. Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  23. Huang, E. W. et al. Numerical evidence of fluctuating stripes in the normal state of high-T c cuprate superconductors. Science 358, 1161–1164 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  24. Donos, A. & Gauntlett, J. P. Holographic charge density waves. Phys. Rev. D 87, 126008 (2013).

    Article  ADS  Google Scholar 

  25. Fauqué, B. et al. Magnetic order in the pseudogap phase of high-T c superconductors. Phys. Rev. Lett. 96, 197001 (2006).

    Article  ADS  Google Scholar 

  26. Li, Y. et al. Unusual magnetic order in the pseudogap region of the superconductor HgBa2CuO4+δ. Nature 455, 372–375 (2008).

    Article  ADS  Google Scholar 

  27. Li, Y. et al. Hidden magnetic excitation in the pseudogap phase of a high-T c superconductor. Nature 468, 283–285 (2010).

    Article  ADS  Google Scholar 

  28. Zhao, L. et al. A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy. Nat. Phys. 13, 250–254 (2017).

    Article  Google Scholar 

  29. Li, Q., Hücker, M., Gu, G., Tsvelik, A. & Tranquada, J. Two-dimensional superconducting fluctuations in stripe-ordered La1.875Ba0.125CuO4. Phys. Rev. Lett. 99, 067001 (2007).

    Article  ADS  Google Scholar 

  30. Rajasekaran, S. et al. Probing optically silent superfluid stripes in cuprates. Science 359, 575–579 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  31. Hamidian, M. H. et al. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 532, 343–347 (2016).

    Article  ADS  Google Scholar 

  32. Ooguri, H. & Park, C.-S. Holographic end-point of spatially modulated phase transition. Phys. Rev. D 82, 126001 (2010).

    Article  ADS  Google Scholar 

  33. Donos, A. & Gauntlett, J. P. Holographic striped phases. J. High Energy Phys. 2011, 140 (2011).

    Article  Google Scholar 

  34. Cai, R.-G., Li, L., Wang, Y.-Q. & Zaanen, J. Intertwined order and holography: The case of parity breaking pair density waves. Phys. Rev. Lett. 119, 181601 (2017).

    Article  ADS  Google Scholar 

  35. Withers, B. Holographic checkerboards. J. High Energy Phys. 2014, 102 (2014).

    Article  MathSciNet  Google Scholar 

  36. Flauger, R., Pajer, E. & Papanikolaou, S. A striped holographic superconductor. Phys. Rev. D 83, 064009 (2011).

    Article  ADS  Google Scholar 

  37. Liu, Y., Schalm, K., Sun, Y.-W. & Zaanen, J. Lattice potentials and fermions in holographic non Fermi-liquids: Hybridizing local quantum criticality. J. High Energy Phys. 2012, 036 (2012).

    Article  Google Scholar 

  38. Horowitz, G. T., Santos, J. E. & Tong, D. Optical conductivity with holographic lattices. J. High Energy Phys. 2012, 168 (2012).

    Article  MathSciNet  Google Scholar 

  39. Horowitz, G. T., Santos, J. E. & Tong, D. Further evidence for lattice-induced scaling. J. High Energy Phys. 2012, 102 (2012).

    Article  ADS  Google Scholar 

  40. Donos, A. & Gauntlett, J. P. The thermoelectric properties of inhomogeneous holographic lattices. J. High Energy Phys. 2015, 035 (2015).

    Article  Google Scholar 

  41. Rangamani, M., Rozali, M. & Smyth, D. Spatial modulation and conductivities in effective holographic theories. J. High Energy Phys. 2015, 024 (2015).

    Article  MathSciNet  Google Scholar 

  42. Langley, B. W., Vanacore, G. & Phillips, P. W. Absence of power-law mid-infrared conductivity in gravitational crystals. J. High Energy Phys. 2015, 163 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  43. Pokrovsky, V. & Talapov, A. Ground state, spectrum, and phase diagram of two-dimensional incommensurate crystals. Phys. Rev. Lett. 42, 65–67 (1979).

    Article  ADS  Google Scholar 

  44. Bak, P. Commensurate phases, incommensurate phases and the devil’s staircase. Rep. Progress. Phys. 45, 587–629 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  45. Andrade, T. & Krikun, A. Commensurate lock-in in holographic non-homogeneous lattices. J. High Energy Phys. 2017, 168 (2017).

    Article  Google Scholar 

  46. Braun, O. & Kivshar, Y. The Frenkel–Kontorova Model: Concepts, Methods and Applications (Springer, Berlin, Heidelberg, 2004).

  47. Comin, R. & Damascelli, A. Resonant x-ray scattering studies of charge order in cuprates. Annu. Rev. Condens. Matter Phys. 7, 369–405 (2016).

    Article  ADS  Google Scholar 

  48. Boebinger, G. et al. Insulator-to-metal crossover in the normal state of La2−xSrxCuO4 near optimum doping. Phys. Rev. Lett. 77, 5417–5420 (1996).

    Article  ADS  Google Scholar 

  49. Laliberte, F. et al. Origin of the metal-to-insulator crossover in cuprate superconductors. Preprint at http://arXiv.org/abs/1606.04491 (2016).

  50. Grozdanov, S., Lucas, A., Sachdev, S. & Schalm, K. Absence of disorder-driven metal-insulator transitions in simple holographic models. Phys. Rev. Lett. 115, 221601 (2015).

    Article  ADS  Google Scholar 

  51. Donos, A., Goutéraux, B. & Kiritsis, E. Holographic metals and insulators with helical symmetry. J. High Energy Phys. 2014, 038 (2014).

    Article  Google Scholar 

  52. Donos, A. & Hartnoll, S. A. Interaction-driven localization in holography. Nat. Phys. 9, 649–655 (2013).

    Article  Google Scholar 

  53. Donos, A. & Gauntlett, J. P. Novel metals and insulators from holography. J. High Energy Phys. 2014, 007 (2014).

    Article  Google Scholar 

  54. Goutéraux, B. Charge transport in holography with momentum dissipation. J. High Energy Phys. 2014, 181 (2014).

    Article  Google Scholar 

  55. Withers, B. The moduli space of striped black branes. Preprint at http://arXiv.org/abs/1304.2011 (2013).

  56. Withers, B. Black branes dual to striped phases. Class. Quant. Grav. 30, 155025 (2013).

    Article  ADS  Google Scholar 

  57. de Haro, S., Solodukhin, S. N. & Skenderis, K. Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence. Commun. Math. Phys. 217, 595–622 (2001).

    Article  ADS  Google Scholar 

  58. Donos, A. Striped phases from holography. J. High Energy Phys. 2013, 059 (2013).

    Article  MathSciNet  Google Scholar 

  59. Gauntlett, J. P., Sonner, J. & Wiseman, T. Quantum criticality and holographic superconductors in M-theory. J. High Energy Phys. 2010, 060 (2010).

    Article  MathSciNet  Google Scholar 

  60. Maldacena, J. M. The large n limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999).

    Article  MathSciNet  Google Scholar 

  61. Witten, E. Anti-de sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  62. Gubser, S. S., Klebanov, I. R. & Polyakov, A. M. Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105–114 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  63. Rozali, M., Smyth, D., Sorkin, E. & Stang, J. B. Holographic stripes. Phys. Rev. Lett. 110, 201603 (2013).

    Article  ADS  Google Scholar 

  64. Nakamura, S., Ooguri, H. & Park, C.-S. Gravity dual of spatially modulated phase. Phys. Rev. D 81, 044018 (2010).

    Article  ADS  Google Scholar 

  65. Lifshitz, E. M. & Pitaevskii, L. P. Statistical Physics: Theory of the Condensed State Vol. 9 (Elsevier, Amsterdam, 2013).

  66. Krikun, A. Holographic discommensurations. Preprint at http://arXiv.org/abs/1710.05801 (2017).

  67. McMillan, W. Theory of discommensurations and the commensurate–incommensurate charge-density-wave phase transition. Phys. Rev. B 14, 1496–1502 (1976).

    Article  ADS  Google Scholar 

  68. Mathematica v10.2 (Wolfram Research, Inc., 2015).

  69. Donos, A. & Gauntlett, J. P. Navier–Stokes equations on black hole horizons and DC thermoelectric conductivity. Phys. Rev. D 92, 121901 (2015).

    Article  ADS  Google Scholar 

  70. Banks, E., Donos, A. & Gauntlett, J. P. Thermoelectric DC conductivities and Stokes flows on black hole horizons. J. High Energy Phys. 2015, 103 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  71. Donos, A., Gauntlett, J. P., Griffin, T. & Melgar, L. DC conductivity of magnetised holographic matter. J. High Energy Phys. 2016, 113 (2016).

    Article  MathSciNet  Google Scholar 

  72. Donos, A., Gauntlett, J. P., Griffin, T., Lohitsiri, N. & Melgar, L. Holographic DC conductivity and Onsager relations. J. High Energy Phys. 2017, 006 (2017).

    Article  MathSciNet  Google Scholar 

  73. Boyd, J. P. Chebyshev and Fourier Spectral Methods (Courier Corporation, Chicago, 2001).

Download references

Acknowledgements

We thank J. Gauntlett, A. Donos, B. Gouteraux, N. Kaplis, C. Pantelidou and J. Santos for insightful discussions. The research of K.S., A.K. and J.Z. was supported in part by a VICI (K.S.) award of the Netherlands Organization for Scientific Research (NWO), by the Netherlands Organization for Scientific Research/Ministry of Science and Education (NWO/OCW) and by the Foundation for Research into Fundamental Matter (FOM). The work of T.A. is supported by the ERC Advanced Grant GravBHs-692951. He also acknowledges the partial support of the Newton–Picarte grant 20140053. Numerical calculations have been performed on the Maris Cluster of the Lorentz Institute.

Author information

Authors and Affiliations

Authors

Contributions

The numerical work and the analysis was carried out in close collaboration between A.K. and T.A. In the conception of the project K.S. and J.Z. played a key role, and J.Z. helped to guide the research resting on his condensed-matter expertise while K.S. added his field theoretical and holographic duality know-how. The manuscript was written jointly by all authors while A.K. is responsible for the figures.

Corresponding author

Correspondence to Alexander Krikun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures S1–S4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, T., Krikun, A., Schalm, K. et al. Doping the holographic Mott insulator. Nature Phys 14, 1049–1055 (2018). https://doi.org/10.1038/s41567-018-0217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0217-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing