Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Harnessing electro-optic correlations in an efficient mechanical converter

Abstract

An optical network of superconducting quantum bits (qubits) is an appealing platform for quantum communication and distributed quantum computing, but developing a quantum-compatible link between the microwave and optical domains remains an outstanding challenge. Operating at T < 100 mK temperatures, as required for quantum electrical circuits, we demonstrate a mechanically mediated microwave–optical converter with 47% conversion efficiency, and use a classical feed-forward protocol to reduce added noise to 38 photons. The feed-forward protocol harnesses our discovery that noise emitted from the two converter output ports is strongly correlated because both outputs record thermal motion of the same mechanical mode. We also discuss a quantum feed-forward protocol that, given high system efficiencies, would allow quantum information to be transferred even when thermal phonons enter the mechanical element faster than the electro-optic conversion rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Feed-forward schematic and measurement network.
Fig. 2: Converter efficiency.
Fig. 3: Electro-optic correlations.
Fig. 4: Feed-forward operation of a microwave–mechanical–optical converter.

Similar content being viewed by others

References

  1. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  2. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  3. Cirac, J. I., Ekert, A. K., Huelga, S. F. & Macchiavello, C. Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249–4254 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  4. Dür, W. & Briegel, H.-J. Entanglement purification for quantum computation. Phys. Rev. Lett. 90, 067901 (2003).

    Article  ADS  Google Scholar 

  5. Kelly, J., Barends, R., Fowler, A. G., Megrant, A. & Jeffrey, E. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    Article  ADS  Google Scholar 

  6. Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    Article  ADS  Google Scholar 

  7. Verdú, J. et al. Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. Phys. Rev. Lett. 103, 043603 (2009).

    Article  ADS  Google Scholar 

  8. Hafezi, M. et al. Atomic interface between microwave and optical photons. Phys. Rev. A 85, 020302 (2012).

    Article  ADS  Google Scholar 

  9. Imamoglu, A. Cavity QED based on collective magnetic dipole coupling: Spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102, 083602 (2009).

    Article  ADS  Google Scholar 

  10. Marcos, D. et al. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. Phys. Rev. Lett. 105, 210501 (2010).

    Article  ADS  Google Scholar 

  11. Kubo, Y. et al. Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 140502 (2010).

    Article  ADS  Google Scholar 

  12. Williamson, L. A., Chen, Y.-H. & Longdell, J. J. Magneto-optic modulator with unit quantum efficiency. Phys. Rev. Lett. 113, 203601 (2014).

    Article  ADS  Google Scholar 

  13. Hisatomi, R. et al. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).

    Article  ADS  Google Scholar 

  14. Ilchenko, V. S., Savchenkov, A. A., Matsko, A. B. & Maleki, L. Whispering-gallery-mode electro-optic modulator and photonic microwave receiver. J. Opt. Soc. Am. B 20, 333–342 (2003).

    Article  ADS  Google Scholar 

  15. Xiong, C., Pernice, W. H. P. & Tang, H. X. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12, 3562–3568 (2012).

    Article  ADS  Google Scholar 

  16. Rueda, A. et al. Efficient microwave to optical photon conversion: an electro-optical realization. Optica 3, 597–604 (2016).

    Article  Google Scholar 

  17. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    Article  Google Scholar 

  18. Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    Article  Google Scholar 

  19. Vainsencher, A., Satzinger, K. J., Peairs, G. A. & Cleland, A. N. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device. Appl. Phys. Lett. 109, 033107 (2016).

    Article  ADS  Google Scholar 

  20. Bagci, T. et al. Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014).

    Article  ADS  Google Scholar 

  21. Takeda, K. et al. Electro-mechano-optical detection of nuclear magnetic resonance. Optica 5, 152–158 (2018).

    Article  Google Scholar 

  22. Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13, 013017 (2011).

    Article  ADS  Google Scholar 

  23. Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun. 3, 1196 (2012).

    Article  ADS  Google Scholar 

  24. Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of merit for quantum transducers. Preprint at http://arxiv.org/abs/1610.01099 (2016).

  25. Safavi-Naeini, A. H. & Painter, O. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Opt. Express 18, 14926–14943 (2010).

    Article  ADS  Google Scholar 

  26. Cohadon, P. F., Heidmann, A. & Pinard, M. Cooling of a mirror by radiation pressure. Phys. Rev. Lett. 83, 3174–3177 (1999).

    Article  ADS  Google Scholar 

  27. Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006).

    Article  ADS  Google Scholar 

  28. Poggio, M., Degen, C. L., Mamin, H. J. & Rugar, D. Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201 (2007).

    Article  ADS  Google Scholar 

  29. Genes, C., Vitali, D., Tombesi, P., Gigan, S. & Aspelmeyer, M. Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008).

    Article  ADS  Google Scholar 

  30. Wilson, D. J. et al. Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature 524, 325–329 (2015).

    Article  ADS  Google Scholar 

  31. Rossi, M. et al. Enhancing sideband cooling by feedback-controlled light. Phys. Rev. Lett. 119, 123603 (2017).

    Article  ADS  Google Scholar 

  32. Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Preprint at http://arxiv.org/abs/1805.05087 (2018).

  33. Duan, L.-M., Lukin, M. D., Cirac, I. & Zoller, P. Long distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  34. Rakhubovsky, A. A., Vostrosablin, N. & Filip, R. Squeezer-based pulsed optomechanical interface. Phys. Rev. A 93, 033813 (2016).

    Article  ADS  Google Scholar 

  35. Zhang, M., Zou, C.-L. & Jiang, L. Quantum transduction with adaptive control. Phys. Rev. Lett. 120, 020502 (2018).

    Article  ADS  Google Scholar 

  36. Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869–872 (1998).

    Article  ADS  Google Scholar 

  37. Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotech. 4, 820–823 (2009).

    Article  ADS  Google Scholar 

  38. Peterson, R. W. et al. Laser cooling of a micromechanical membrane to the quantum backaction limit. Phys. Rev. Lett. 116, 063601 (2016).

    Article  ADS  Google Scholar 

  39. Andrews, R. W. Quantum Signal Processing with Mechanical Oscillators. PhD thesis, Univ. Colorado (2015).

  40. Menke, T. et al. Reconfigurable re-entrant cavity for wireless coupling to an electro-optomechanical device. Rev. Sci. Instrum. 88, 094701 (2017).

    Article  ADS  Google Scholar 

  41. Thompson, J. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Thompson and M. Holland for fruitful conversations and K. Cicak for assistance with device fabrication. We acknowledge funding from AFOSR MURI grant number FA9550-15-1-0015, the NSF under grant number PHYS 1734006, DURIP and AFOSR PECASE.

Author information

Authors and Affiliations

Authors

Contributions

A.P.H., P.S.B. and M.D.U. conducted the experiment and analysed data. A.P.H, P.S.B., M.D.U., R.W.P. and N.S.K. designed and constructed the measurement network. M.D.U. and R.W.P. designed and constructed the optical cavity. P.S.B. designed and fabricated the flip-chip device. A.P.H. and G.S. developed feed-forward theory. A.P.H., P.S.B., M.D.U., B.M.B., G.S., K.W.L. and C.A.R. wrote the manuscript. C.A.R. and K.W.L. supervised the work. All authors commented on the results and manuscript.

Corresponding author

Correspondence to P. S. Burns.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Supplementary Table 1, Supplementary Figures 1–6, Supplementary References 1–10

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higginbotham, A.P., Burns, P.S., Urmey, M.D. et al. Harnessing electro-optic correlations in an efficient mechanical converter. Nature Phys 14, 1038–1042 (2018). https://doi.org/10.1038/s41567-018-0210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0210-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing