Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superlight inverse Doppler effect

Abstract

It has long been thought1 that the inverse Doppler frequency shift of light2,3,4,5,6,7,8,9,10,11,12,13 is impossible in homogeneous systems with a positive refractive index. Here we break this long-held tenet by predicting a previously unconsidered Doppler effect of light inside a radiation cone, the so-called Vavilov–Cherenkov cone, under specific circumstances. It has been known from the classic work of Ginzburg and Frank that a superlight (that is, superluminal) normal Doppler effect14,15,16,17,18 appears inside the Vavilov–Cherenkov cone if the velocity of the source v is larger than the phase velocity of light vp. By further developing their theory, we discover that an inverse Doppler frequency shift will arise if v > 2vp. We denote this as the superlight inverse Doppler effect. Moreover, we show that the superlight inverse Doppler effect can be spatially separated from the other Doppler effects by using highly squeezed polaritons (such as graphene plasmons), which may facilitate the experimental observation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representation in k space of the conventional Doppler effect, superlight normal Doppler effect and superlight inverse Doppler effect.
Fig. 2: Real-space schematic demonstration of various Doppler effects of light.
Fig. 3: Superlight inverse Doppler effect of graphene plasmons.
Fig. 4: Real-space representation of the superlight inverse Doppler effect spatially separated from other Doppler effects.

Similar content being viewed by others

References

  1. Gill, T. P. The Doppler Effect: An Introduction to the Theory of the Effect (Logos, London, 1965).

  2. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ϵ and μ. Sov. Phys. Uspekhi 10, 509–514 (1968).

    Article  ADS  Google Scholar 

  3. Leong, K., Lai, A. & Itoh, T. Demonstration of reverse Doppler effect using a left-handed transmission line. Microw. Opt. Technol. Lett. 48, 545–547 (2006).

    Article  Google Scholar 

  4. Chumak, A. V., Dhagat, P., Jander, A., Serga, A. A. & Hillebrands, B. Reverse Doppler effect of magnons with negative group velocity scattered from a moving Bragg grating. Phys. Rev. B 81, 140404 (2010).

    Article  ADS  Google Scholar 

  5. Chen, J. et al. Observation of the inverse Doppler effect in negative-index materials at optical frequencies. Nat. Photon. 5, 239–242 (2011).

    Article  ADS  Google Scholar 

  6. Lee, S. H., Park, C. M., Seo, Y. M. & Kim, C. K. Reversed Doppler effect in double negative metamaterials. Phys. Rev. B 81, 241102(R) (2010).

    Article  ADS  Google Scholar 

  7. Luo, C. Y., Ibanescu, M., Reed, E. J., Johnson, S. G. & Joannopoulos, J. D. Doppler radiation emitted by an oscillating dipole moving inside a photonic band-gap crystal. Phys. Rev. Lett. 96, 043903 (2006).

    Article  ADS  Google Scholar 

  8. Liu, W. F., Russell, P. St. J. & Dong, L. Acousto-optic superlattice modulator using a fiber Bragg grating. Opt. Lett. 22, 1515–1517 (1997).

    Article  ADS  Google Scholar 

  9. Hu, X. H., Hang, Z. H., Li, J. S., Zi, J. & Chan, C. T. Anomalous Doppler effects in phononic band gaps. Phys. Rev. E 73, 015602 (2006).

    Article  ADS  Google Scholar 

  10. Belyantsev, A. M. & Kozyrev, A. B. Reversed Doppler effect under reflection from a shock electromagnetic wave. Tech. Phys. 47, 1477–1480 (2002).

    Article  Google Scholar 

  11. Seddon, N. & Bearpark, T. Observation of the inverse Doppler effect. Science 302, 1537–1540 (2003).

    Article  ADS  Google Scholar 

  12. Reed, E. J., Soljacic, M. & Joannopoulos, J. D. Reversed Doppler effect in photonic crystals. Phys. Rev. Lett. 91, 133901 (2003).

    Article  ADS  Google Scholar 

  13. Reed, E. J., Soljacic, M., Ibanescu, M. & Joannopoulos, J. D. Comment on “Observation of the inverse Doppler effect”. Science 305, 778b (2004).

    Article  Google Scholar 

  14. Ginzburg, V. L. & Frank, I. M. About Doppler effect at superlight velocity. Dokl. Akad. Nauk SSSR 56, 583–586 (1947).

    Google Scholar 

  15. Frank, I. M. Optics of light sources moving in refractive media. Science 131, 702–712 (1960).

    Article  ADS  Google Scholar 

  16. Tamm, I. E. Nobel Lectures, Physics 1942–1962 470–482 (Elsevier, Amsterdam, 1964).

  17. Ginzburg, V. L. Radiation by uniformly moving sources (Vavilov–Cherenkov effect, transition radiation, and other phenomena). Phys.-Usp. 39, 973–982 (1996).

    Article  ADS  Google Scholar 

  18. Einat, M. & Jerby, E. Normal and anomalous Doppler effects in a dielectric-loaded stripline cyclotron-resonance maser oscillator. Phys. Rev. E 56, 5996–6001 (1997).

    Article  ADS  Google Scholar 

  19. Lin, X. et al. Splashing transients of 2D plasmons launched by swift electrons. Sci. Adv. 3, e1601192 (2017).

    Article  ADS  Google Scholar 

  20. Pendry, J. B. Time reversal and negative refraction. Science 322, 71–73 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  21. Silveirinha, M. G. Quantization of the electromagnetic field in nondispersive polarizable moving media above the Cherenkov threshold. Phys. Rev. A 88, 043846 (2013).

    Article  ADS  Google Scholar 

  22. Silveirinha, M. G. Theory of quantum friction. New J. Phys. 16, 063011 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  23. Silveirinha, M. G. Optical instabilities and spontaneous light emission by polarizable moving matter. Phys. Rev. X 4, 031013 (2014).

    Google Scholar 

  24. Lin, X. et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures. Proc. Natl Acad. Sci. USA 114, 6717–6721 (2017).

    ADS  Google Scholar 

  25. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  ADS  Google Scholar 

  26. Bakunov, M. I., Tsarev, M. V. & Hangyo, M. Cherenkov emission of terahertz surface plasmon polaritons from a superluminal optical spot on a structured metal surface. Opt. Express 17, 9323–9329 (2009).

    Article  ADS  Google Scholar 

  27. Shi, X. et al. Caustic graphene plasmons with Kelvin angle. Phys. Rev. B 92, 081404(R) (2015).

    Article  ADS  Google Scholar 

  28. García de Abajo, F. J. & Echenique, P. M. Wake potential in the vicinity of a surface. Phys. Rev. B 46, 2663 (1992).

    Article  ADS  Google Scholar 

  29. Philbin, T. G. et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

    Article  ADS  Google Scholar 

  30. Bermudez, D. & Leonhardt, U. Hawking spectrum for a fiber-optical analog of the event horizon. Phys. Rev. A 93, 053820 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the Singapore Ministry of Education (grant nos. MOE2015-T2-1-070, MOE2016-T3-1-006 and Tier 1 RG174/16 (S)), and the US Army Research Laboratory and the US Army Research Office through the Institute for Soldier Nanotechnologies (contract nos. W911NF-18-2-0048 and W911NF-13-D-0001). I.K. is an Azrieli Fellow, supported by the Azrieli Foundation, and was partially supported by the Seventh Framework Programme of the European Research Council (FP7-Marie Curie IOF) under grant no. 328853-MC-BSiCS.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. X.L., X.S. and B.Z. conceived the research. X.S. and X.L. performed the calculation. I.K., J.D.J., M.S, F.G., Z.Y. and B.Z. contributed insight and discussion on the results. X.L., X.S., B.Z., I.K., J.D.J. and M.S wrote the paper. B.Z., I.K., J.D.J. and M.S. supervised the project.

Corresponding authors

Correspondence to Xiao Lin, Ido Kaminer or Baile Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Four chapters, two figures, 11 references

Supplementary Video

Duration: 11 s

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Lin, X., Kaminer, I. et al. Superlight inverse Doppler effect. Nature Phys 14, 1001–1005 (2018). https://doi.org/10.1038/s41567-018-0209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0209-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing