Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Verticalization of bacterial biofilms

Abstract

Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modelling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an ‘inverse domino effect’. The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of experimental and modelled biofilms.
Fig. 2: Mechanics of cell reorientation in modelled biofilms.
Fig. 3: Two-component fluid model for verticalizing cells in biofilms.
Fig. 4: Global morphological properties of experimental and modelled biofilms.

Similar content being viewed by others

References

  1. Ghannoum, M., Parsek, M., Whiteley, M. & Mukherjee, P. K. Microbial Biofilms 2nd edn (ASM, Washington DC, 2015).

  2. Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Article  Google Scholar 

  3. Gordon, V. D., Davis-Fields, M., Kovach, K. & Rodesney, A. Biofilms and mechanics: a review of experimental techniques and findings. J. Phys. D 50, 223002 (2017).

    Article  ADS  Google Scholar 

  4. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    Article  Google Scholar 

  5. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  ADS  Google Scholar 

  6. Stewart, E. J., Satorius, A. E., Younger, J. G. & Solomon, M. J. Role of environmental and antibiotic stress on Staphylococcus epidermidis biofilm microstructure. Langmuir 29, 7017–7024 (2013).

    Article  Google Scholar 

  7. Drescher, K. et al. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. Proc. Natl Acad. Sci. USA 113, E2066–E2072 (2016).

    Article  Google Scholar 

  8. Yan, J., Sharo, A. G., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging. Proc. Natl Acad. Sci. USA 113, E5337–E5343 (2016).

    Article  Google Scholar 

  9. Teschler, J. K. et al. Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat. Rev. Microbiol. 13, 255–268 (2015).

    Article  Google Scholar 

  10. Bartlett, T. M. et al. A periplasmic polymer curves Vibrio cholerae and promotes pathogenesis. Cell 168, 172–185 (2017).

    Article  Google Scholar 

  11. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51, 627–659 (1949).

    Article  ADS  Google Scholar 

  12. Berk, V. et al. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science 337, 236–239 (2012).

    Article  ADS  Google Scholar 

  13. Doostmohammadi, A., Thampi, S. P. & Yeomans, J. M. Defect-mediated morphologies in growing cell colonies. Phys. Rev. Lett. 117, 048102 (2016).

    Article  ADS  Google Scholar 

  14. Duvernoy, M.-C. et al. Asymmetric adhesion of rod-shaped bacteria controls microcolony morphogenesis. Nat. Commun. 9, 1120 (2018).

  15. Enos-Berlage, J. L. & McCarter, L. L. Relation of capsular polysaccharide production and colonial cell organization to colony morphology in Vibrio parahaemolyticus. J. Bacteriol. 182, 5513–5520 (2000).

    Article  Google Scholar 

  16. Boyer, D. et al. Buckling instability in ordered bacterial colonies. Phys. Biol. 8, 026008 (2011).

    Article  ADS  Google Scholar 

  17. Smith, W. P. J. et al. Cell morphology drives spatial patterning in microbial communities. Proc. Natl Acad. Sci. USA 114, E280–E286 (2016).

    Article  Google Scholar 

  18. You Z., Pearce, D. J. G., Sengupta, A. & Giomi, L. Geometry and mechanics of micro-domains in growing bacterial colonies. Preprint at https://arxiv.org/abs/1703.04504 (2017).

  19. Mamou, G., Mohan, G. B. M., Rouvinski, A., Rosenberg, A. & Ben-Yehuda, S. Early developmental program shapes colony morphology in bacteria. Cell Rep. 14, 1850–1857 (2016).

    Article  Google Scholar 

  20. Grant, M. A. A., Waclaw, B., Allen, R. J. & Cicuta, P. The role of mechanical forces in the planar-to-bulk transition in growing Escherichia coli microcolonies. J. R. Soc. Interface https://doi.org/10.1098/rsif.2014.0400 (2014).

  21. Su, P.-T. et al. Bacterial colony from two-dimensional division to three-dimensional development. PLoS One 7, e48098 (2012).

    Article  ADS  Google Scholar 

  22. Asally, M. et al. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proc. Natl Acad. Sci. USA 109, 18891–18896 (2012).

    Article  ADS  Google Scholar 

  23. Kumar, N., Soni, H., Ramaswamy, S. & Sood, A. K. Flocking at a distance in active granular matter. Nat. Commun. 5, 4688 (2014).

    Article  ADS  Google Scholar 

  24. Narayan, V., Ramaswamy, S. & Menon, N. Long-lived giant number fluctuations in a swarming granular nematic. Science 317, 105–108 (2007).

    Article  ADS  Google Scholar 

  25. Yadav, V., Chastaing, J.-Y. & Kudrolli, A. Effect of aspect ratio on the development of order in vibrated granular rods. Phys. Rev. E 88, 052203 (2013).

    Article  ADS  Google Scholar 

  26. Farrell, F. D. C., Hallatschek, O., Marenduzzo, D. & Waclaw, B. Mechanically driven growth of quasi-two-dimensional microbial colonies. Phys. Rev. Lett. 111, 168101 (2013).

    Article  ADS  Google Scholar 

  27. Ghosh, P., Mondal, J., Ben-Jacob, E. & Levine, H. Mechanically-driven phase separation in a growing bacterial colony. Proc. Natl Acad. Sci. USA 112, E2166–E2173 (2015).

    Article  ADS  Google Scholar 

  28. Lardon, L. A. et al. iDynoMiCS: next-generation individual-based modelling of biofilms. Env. Microbiol. 13, 2416–2434 (2011).

    Article  Google Scholar 

  29. Chen, Y., van der Mei, H. C., Busscher, H. J. & Norde, W. Viscous nature of the bond between adhering bacteria and substratum surfaces probed by atomic force microscopy. Langmuir 30, 3165–3169 (2014).

    Article  Google Scholar 

  30. Barthel, E. Adhesive elastic contacts - JKR and more. J. Phys. D 41, 163001 (2008).

    Article  ADS  Google Scholar 

  31. Candelier, R., Dauchot, O. & Biroli, G. Dynamical facilitation decreases when approaching the granular glass transition. Eur. Phys. Lett. 92, 24003 (2010).

    Article  ADS  Google Scholar 

  32. White, C. L., Kitich, A. & Gober, J. W. Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Mol. Microbiol. 76, 616–633 (2010).

    Article  Google Scholar 

  33. Yang, D. C., Blair, K. M. & Salama, N. R. Staying in shape: the impact of cell shape on bacterial survival in diverse environments. Microbiol. Mol. Biol. Rev. 80, 187–203 (2016).

    Article  Google Scholar 

  34. Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660–703 (2006).

    Article  Google Scholar 

  35. Stocker, R. & Seymour, J. R. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol. Mol. Biol. Rev. 76, 792–812 (2012).

    Article  Google Scholar 

  36. Chang, F. & Huang, K. C. How and why cells grow as rods. BMC Biol. 12, 54 (2014).

    Article  Google Scholar 

  37. Jubair, M., Morris, J. G.Jr. & Ali, A. Survival of Vibrio cholerae in nutrient-poor environments is associated with a novel “persister” phenotype. PLoS One 7, e45187 (2012).

    Article  ADS  Google Scholar 

  38. Yan, J., Nadell, C. D., Stone, H. A., Wingreen, N. S. & Bassler, B. L. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nat. Commun. 8, 327 (2017).

    Article  ADS  Google Scholar 

  39. Vicsek, T. Fluctuations and Scaling in Biology (Oxford Univ. Press, Oxford, 2001).

  40. Fisher, R. A. The wave of advance of advantageous genes. Ann. Eugen. 7, 353–369 (1937).

    MATH  Google Scholar 

  41. von Saarloos, W. Front propagation into unstable states. Phys. Rep. 386, 29–222 (2003).

    Article  ADS  MATH  Google Scholar 

  42. Fort, J. & Pujol, T. Progress in front propagation research. Rep. Prog. Phys. 71, 086001 (2008).

    Article  ADS  Google Scholar 

  43. Puliafito, A. et al. Collective and single cell behavior in epithelial contact inhibition. Proc. Natl Acad. Sci. USA 109, 739–744 (2012).

    Article  ADS  Google Scholar 

  44. Delarue, M. et al. Self-driven jamming in growing microbial populations. Nat. Phys. 12, 762–766 (2016).

    Article  Google Scholar 

  45. Bi, D., Lopez, J. H., Schwarz, J. M. & Manning, M. L. A density-independent rigidity transition in biological tissues. Nat. Phys. 11, 1074–1078 (2015).

    Article  Google Scholar 

  46. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143 (2013).

    Article  ADS  Google Scholar 

  47. Beyhan, S. & Yildiz, F. H. Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets c-di-GMP signaling pathway. Mol. Microbiol. 63, 995–1007 (2007).

    Article  Google Scholar 

  48. Landau, L. D., Lifshitz, E. M., Kosevich, A. M. & Pitaevskii, L. P. Theory of Elasticity (Pergamon Press, Oxford, 1986).

  49. Galassi, M. et al. GNU Scientific Library Reference Manual 3rd edn (Network Theory Ltd, Godalming, 2017).

  50. Guyer, J. E., Wheeler, D. & Warren, J. A. FiPy: Partial differential equations with Python. Comp. Sci. Eng. 11, 6–15 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Bratton, X. Chen, S. Jena, N. Pappireddi and J. Shaevitz for insightful discussions and encouragement, G. Laevsky for assistance with imaging and T. Bartlett and Z. Gitai for sharing the ΔcrvA strain and reagents. This work was supported by the NIH under grant no. R01 GM082938 (F.B., Y.M. and N.S.W.), the Howard Hughes Medical Institute (B.L.B.), NSF grant MCB-1713731 (B.L.B.), NSF grant MCB-1344191 (H.A.S., B.L.B. and N.S.W.), NIH grant 2R37GM065859 (F.B. and B.L.B.), the Max Planck Society-Alexander von Humboldt Foundation (B.L.B.) and the Eric and Wendy Schmidt Transformative Technology Fund from Princeton University (H.A.S., B.L.B. and N.S.W.). J.Y. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Contributions

F.B., J.Y., and N.S.W. conceived the research. F.B. performed all simulations and analysis. J.Y. carried out all experiments, and J.Y. and F.B. contributed to the experimental design. All authors contributed to the manuscript preparation.

Corresponding author

Correspondence to Ned S. Wingreen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, Supplementary Figures 1–16, Supplementary Discussion, Supplementary References 1–20

Reporting Summary

Supplementary Video 1

Growth of a V. cholerae biofilm cluster, showing cross-sectional images of the bottom cell layer. The strain constitutively expresses mKO. The viewing window is 45 by 45 µm2 and the total duration is 8 hours with 10 min time steps.

Supplementary Video 2

Visualization of the surface layer of a modelled biofilm with initial cell cylinder length \({\ell }_{0}\) = 1 µm, showing positions and orientations of horizontal (blue) and vertical (red) surface-adhered cells as spherocylinders of radius R = 0.8 µm, with the surface shown at height z = 0 µm (brown). Cells with nz < 0.5 (>0.5) are considered horizontal (vertical), where \({{\bf{{n}}}}\) is the orientation vector. Scale bar, 3 µm. The total duration is 10 hours.

Supplementary Video 3

Visualization of the surface layer of a modelled biofilm with initial cell cylinder length \({\ell }_{0}\) = 2 µm, showing horizontal (blue) and vertical (red) cells as spherocylinders, the surface (brown), and cell-to-cell contact forces (yellow lines connecting the centres of cells, with thicknesses proportional to the force). Cells with nz < 0.5 (>0.5) are considered horizontal (vertical), where \({{\bf{{n}}}}\) is the orientation vector. The length of the scale bar is 3 µm, and its thickness corresponds to 300 pN.

Supplementary Video 4

Numerical simulation of the continuum model assuming no vertical cell transport, showing radial densities of horizontal cells (ρh, blue), vertical cells (ρv, red), and total density (\({\widetilde{\rho }}_{{\rm{tot}}}\)= ρh + ξρv, black), versus radial coordinate r for isobaric regime with \({\widetilde{\rho }}_{0}\) = 1 m−2, \({\widetilde{\rho }}_{{\rm{t}}}\) = 1.5 m−2, β = 2.5α, and ξ = 0.5. Dashed grey line shows \({\widetilde{\rho }}_{{\rm{t}}}.\)

Supplementary Video 5

Expansion of V. cholerae biofilm clusters grown with the drug A22 at a concentration of 0.4 µg mL–1 (left) and the drug Cefalexin at a concentration of 4 µg mL–1 (right). Cross-sectional images of the bottom cell layers are shown. The strain constitutively expresses mKO. Scale bar, 30 µm. The total duration is 10 hours with 30 min time steps.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beroz, F., Yan, J., Meir, Y. et al. Verticalization of bacterial biofilms. Nature Phys 14, 954–960 (2018). https://doi.org/10.1038/s41567-018-0170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0170-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing