Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of interacting fermions under spin–orbit coupling in an optical lattice clock

Abstract

Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin–orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ramsey spectroscopy with spin-orbit coupling.
Fig. 2: Non-interacting echo decay.
Fig. 3: Spin-orbit coupling with varying interactions.
Fig. 4: Interactions with and without spin–orbit coupling.

Similar content being viewed by others

References

  1. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  2. Barbarino, S., Taddia, L., Rossini, D., Mazza, L. & Fazio, R. Synthetic gauge fields in synthetic dimensions: interactions and chiral edge modes. New. J. Phys. 18, 035010 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  3. Strinati, M. C. et al. Laughlin-like states in bosonic and fermionic atomic synthetic ladders. Phys. Rev. X 7, 021033 (2017).

    Google Scholar 

  4. Zeng, T.-S., Wang, C. & Zhai, H. Charge pumping of interacting fermion atoms in the synthetic dimension. Phys. Rev. Lett. 115, 095302 (2015).

    Article  ADS  Google Scholar 

  5. Zhai, H. Degenerate quantum gases with spin–orbit coupling: a review. Rep. Prog. Phys. 78, 026001 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  6. Goldman, N., Juzeliūnas, G., Öhberg, P. & Spielman, I. B. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).

    Article  ADS  Google Scholar 

  7. Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014).

    Article  ADS  Google Scholar 

  8. Galitski, V. & Spielman, I. B. Spin-orbit coupling in quantum gases. Nature 494, 49–54 (2013).

    Article  ADS  Google Scholar 

  9. Goldman, N., Dalibard, J., Aidelsburger, M. & Cooper, N. R. Periodically driven quantum matter:the case of resonant modulations. Phys. Rev. A 91, 033632 (2015).

    Article  ADS  Google Scholar 

  10. Dalibard, J., Gerbier, F., Juzeliūnas, G. & Öhberg, P. Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011).

    Article  ADS  Google Scholar 

  11. Wall, M. L. et al. Synthetic spin-orbit coupling in an optical lattice clock. Phys. Rev. Lett. 116, 035301 (2016).

    Article  ADS  Google Scholar 

  12. Lin, Y.-J., Jiménez-García, K. & Spielman, I. B. A spin-orbit coupled Bose–Einstein condensate. Nature 471, 83–86 (2011).

    Article  ADS  Google Scholar 

  13. Fu, Z. et al. Radio-frequency spectroscopy of a strongly interacting spin–orbit-coupled Fermi gas. Phys. Rev. A 87, 053619 (2013).

    Article  ADS  Google Scholar 

  14. Ha, L.-C., Clark, L. W., Parker, C. V., Anderson, B. M. & Chin, C. Roton-Maxon excitation spectrum of Bose condensates in a shaken lattice. Phys. Rev. Lett. 114, 055301 (2015).

    Article  ADS  Google Scholar 

  15. Li, J. R. et al. A stripe phase with supersolid properties in spin-orbit-coupled Bose–Einstein condensates. Nature 543, 91–94 (2017).

    Article  ADS  Google Scholar 

  16. Tai, M. E. et al. Microscopy of the interacting Harper–Hofstadter model in the few-body limit. Nature 546, 519–523 (2017).

    Article  ADS  Google Scholar 

  17. Kolkowitz, S. et al. Spin-orbit-coupled fermions in an optical lattice clock. Nature 542, 66–70 (2017).

    Article  ADS  Google Scholar 

  18. Livi, L. F. et al. Synthetic dimensions and spin-orbit coupling with an optical clock transition. Phys. Rev. Lett. 117, 220401 (2016).

    Article  ADS  Google Scholar 

  19. Martin, M. J. et al. A quantum many-body spin system in an optical lattice clock. Science 341, 632–636 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Zhang, X. et al. Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism. Science 345, 1467–1473 (2014).

    Article  ADS  Google Scholar 

  21. Anderson, P. W. Random-phase approximation in the theory of superconductivity. Phys. Rev. 112, 1900–1916 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  22. Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Deutsch, C. et al. Spin self-rephasing and very long coherence times in a trapped atomic ensemble. Phys. Rev. Lett. 105, 020401 (2010).

    Article  ADS  Google Scholar 

  24. Du, X., Luo, L., Clancy, B. & Thomas, J. E. Observation of anomalous spin segregation in a trapped Fermi gas. Phys. Rev. Lett. 101, 150401 (2008).

    Article  ADS  Google Scholar 

  25. Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    Article  ADS  Google Scholar 

  26. Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    Article  ADS  Google Scholar 

  27. Rey, A. M. et al. Probing many-body interactions in an optical lattice clock. Ann. Phys. 340, 311–351 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Bishof, M. et al. Inelastic collisions and density-dependent excitation suppression in a 87Sr optical lattice clock. Phys. Rev. A 84, 052716 (2011).

    Article  ADS  Google Scholar 

  29. Lemke, N. D. et al. p-wave cold collisions in an optical lattice clock. Phys. Rev. Lett. 107, 103902 (2011).

    Article  ADS  Google Scholar 

  30. Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  31. Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science 358, 90–94 (2017).

    Article  ADS  Google Scholar 

  32. Isaev, L., Schachenmayer, J. & Rey, A. M. Spin-orbit-coupled correlated metal phase in Kondo lattices: An implementation with alkaline-earth atoms. Phys. Rev. Lett. 117, 135302 (2016).

    Article  ADS  Google Scholar 

  33. de Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    Article  ADS  Google Scholar 

  34. Slichter, C. P. Principles of Magnetic Resonance (Springer-Verlag, Berlin, 1996).

  35. Schachenmayer, J., Pikovski, A. & Rey, A. M. Dynamics of correlations in two-dimensional quantum spin models with long-range interactions: a phase-space Monte-Carlo study. New. J. Phys. 17, 065009 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Lukin, S. Yelin, V. Gurarie, M. Foster, S. L. Campbell, A. Goban, R. B. Hutson, G.E. Marti, E. Oelker, J. Robinson, L. Sonderhouse and D. G. Reed for stimulating discussions and technical contributions. We thank M. Norcia and A. Kaufman for their careful reading of the manuscript. This research is supported by NIST, DARPA, JILA Physics Frontier Center (NSF-PFC-1125844), AFOSR-MURI, and AFOSR. C.S. is partially supported by the JILA Visiting Fellow Program.

Author information

Authors and Affiliations

Authors

Contributions

S.L.B., S.K., T.B., D.K. and J.Y. contributed to the executions of the experiments. A.S.-N., M.L.W. and A.M.R. developed the theory model. All authors discussed the results, contributed to the data analysis and worked together on the manuscript.

Corresponding author

Correspondence to S. L. Bromley.

Ethics declarations

Competing interests

The authors have no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figure 1–3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bromley, S.L., Kolkowitz, S., Bothwell, T. et al. Dynamics of interacting fermions under spin–orbit coupling in an optical lattice clock. Nature Phys 14, 399–404 (2018). https://doi.org/10.1038/s41567-017-0029-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-017-0029-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing