Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

600-km repeater-like quantum communications with dual-band stabilization

Abstract

Twin-field (TF) quantum key distribution (QKD) fundamentally alters the rate-distance relationship of QKD, offering the scaling of a single-node quantum repeater. Although recent experiments have demonstrated the new opportunities for secure long-distance communications allowed by TF-QKD, formidable challenges remain to unlock its true potential. Previous demonstrations have required intense stabilization signals at the same wavelength as the quantum signals, thereby unavoidably generating Rayleigh scattering noise that limits the distance and bit rate. Here, we introduce a dual-band stabilization scheme that overcomes past limitations and can be adapted to other phase-sensitive single-photon applications. Using two different optical wavelengths multiplexed together for channel stabilization and protocol encoding, we develop a setup that provides repeater-like key rates over communication distances of 555 km and 605 km in the finite-size and asymptotic regimes respectively and increases the secure key rate at long distance by two orders of magnitude to values of practical relevance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup.
Fig. 2: Dual-band stabilization.
Fig. 3: Key rate simulations and results.
Fig. 4: Binary maps of the extracted bit strings.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors on reasonable request.

Code availability

The codes used to process the data for this paper are available from the corresponding authors on reasonable request.

References

  1. Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014).

    Article  MathSciNet  Google Scholar 

  2. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  3. Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).

    Article  ADS  Google Scholar 

  4. Takeoka, M., Guha, S. & Wilde, M. M. Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun. 5, 5235 (2014).

    Article  ADS  Google Scholar 

  5. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  6. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  7. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  ADS  Google Scholar 

  8. Guha, S. et al. Rate-loss analysis of an efficient quantum repeater architecture. Phys. Rev. A 92, 022357 (2015).

    Article  ADS  Google Scholar 

  9. Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article  ADS  Google Scholar 

  10. Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    Article  ADS  Google Scholar 

  11. Braunstein, S. L. & Pirandola, S. Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).

    Article  ADS  Google Scholar 

  12. Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

    Article  ADS  Google Scholar 

  13. Minder, M. et al. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics 13, 334–338 (2019).

    Article  ADS  Google Scholar 

  14. Wang, S. et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X 9, 021046 (2019).

    Google Scholar 

  15. Liu, Y. et al. Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123, 100505 (2019).

    Article  ADS  Google Scholar 

  16. Zhong, X., Hu, J., Curty, M., Qian, L. & Lo, H.-K. Proof-of-principle experimental demonstration of twin-field type quantum key distribution. Phys. Rev. Lett. 123, 100506 (2019).

    Article  ADS  Google Scholar 

  17. Fang, X.-T. et al. Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photonics 14, 422–425 (2020).

    Article  ADS  Google Scholar 

  18. Chen, J.-P. et al. Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett. 124, 070501 (2020).

    Article  ADS  Google Scholar 

  19. Tamaki, K., Lo, H.-K., Wang, W. & Lucamarini, M. Information theoretic security of quantum key distribution overcoming the repeaterless secret key capacity bound. Preprint at https://arxiv.org/abs/1805.05511 (2018).

  20. Ma, X., Zeng, P. & Zhou, H. Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018).

    Google Scholar 

  21. Lin, J. & Lütkenhaus, N. Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A 98, 042332 (2018).

    Article  ADS  Google Scholar 

  22. Curty, M., Azuma, K. & Lo, H.-K. Simple security proof of twin-field type quantum key distribution protocol. npj Quantum Inf. 5, 64 (2019).

    Article  ADS  Google Scholar 

  23. Cui, C. et al. Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl. 11, 034053 (2019).

    Article  ADS  Google Scholar 

  24. Wang, X.-B., Yu, Z.-W. & Hu, X.-L. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323 (2018).

    Article  ADS  Google Scholar 

  25. Jiang, C., Yu, Z.-W., Hu, X.-L. & Wang, X.-B. Unconditional security of sending or not sending twin-field quantum key distribution with finite pulses. Phys. Rev. Appl. 12, 024061 (2019).

    Article  ADS  Google Scholar 

  26. Yu, Z.-W., Hu, X.-L., Jiang, C., Xu, H. & Wang, X.-B. Sending-or-not-sending twin-field quantum key distribution in practice. Sci. Rep. 9, 3080 (2019).

    Article  ADS  Google Scholar 

  27. Gottesman, D. & Hoi-Kwong, L. Proof of security of quantum key distribution with two-way classical communications. IEEE Trans. Inf. Theory 49, 457–475 (2003).

    Article  MathSciNet  Google Scholar 

  28. Chau, H. F. Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate. Phys. Rev. A 66, 802 (2002).

    Article  Google Scholar 

  29. Xu, H., Yu, Z.-W., Jiang, C., Hu, X.-L. & Wang, X.-B. Sending-or-not-sending twin-field quantum key distribution: breaking the direct transmission key rate. Phys. Rev. A 101, 042330 (2020).

    Article  ADS  Google Scholar 

  30. Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018).

    Article  ADS  Google Scholar 

  31. Gottesman, D., Jennewein, T. & Croke, S. Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012).

    Article  ADS  Google Scholar 

  32. Arrazola, J. M. & Lütkenhaus, N. Quantum fingerprinting with coherent states and a constant mean number of photons. Phys. Rev. A 89, 062305 (2014).

    Article  ADS  Google Scholar 

  33. Xu, F. et al. Experimental quantum fingerprinting with weak coherent pulses. Nat. Commun. 6, 8735 (2015).

    Article  ADS  Google Scholar 

  34. Zhong, X., Xu, F., Lo, H.-K. & Qian, L. Efficient experimental quantum fingerprinting with wavelength division multiplexing. Preprint at https://arxiv.org/abs/2005.06049v1 (2020).

  35. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  36. Jiang, C., Hu, X.-L., Yu, Z.-w. & Wang, X.-b. Composable security for practical quantum key distribution with two way classical communication. Preprint at https://arxiv.org/abs/2102.00739v1 (2021).

  37. Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  Google Scholar 

  38. Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank X.-B. Wang and H. Xu for their useful feedback on the TWCC protocol. We acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement number 857156 ‘OPENQKD’ and under the Marie Skłodowska-Curie grant agreement number 675662. M.M. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) and Toshiba Europe Limited.

Author information

Authors and Affiliations

Authors

Contributions

M.P. and M.M. developed the experimental setup, performed the measurements and analysed the data. M.S. and R.I.W. supported the experimental work. M.-J.L. provided the ultralow-loss fibres. Z.Y., M.L. and A.J.S. guided the work. M.L., M.P. and M.M. provided the simulations and wrote the manuscript, with contributions from all the authors.

Corresponding authors

Correspondence to Mirko Pittaluga or Marco Lucamarini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Photonics thanks Guilherme B. Xavier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–3 and Tables 1–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pittaluga, M., Minder, M., Lucamarini, M. et al. 600-km repeater-like quantum communications with dual-band stabilization. Nat. Photon. 15, 530–535 (2021). https://doi.org/10.1038/s41566-021-00811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00811-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing