Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Implementation of quantum key distribution surpassing the linear rate-transmittance bound

Abstract

Quantum key distribution (QKD)1,2 offers a long-term solution to secure key exchange. Due to photon loss in transmission, it was believed that the repeaterless key rate is bounded by a linear function of the transmittance, O(η) (refs. 3,4), limiting the maximal secure transmission distance5,6. Recently, a novel type of QKD scheme has been shown to beat the linear bound and achieve a key rate performance of \(O(\sqrt{\eta })\) (refs. 7,8,9). Here, by employing the laser injection technique and the phase post-compensation method, we match the modes of two independent lasers and overcome the phase fluctuation. As a result, the key rate surpasses the linear bound via 302 km and 402 km commercial-fibre channels, over four orders of magnitude higher than existing results5. Furthermore, our system yields a secret key rate of 0.118 bps with a 502 km ultralow-loss fibre. This new type of QKD pushes forward long-distance quantum communication for the future quantum internet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of PM-QKD.
Fig. 2: Experimental set-up.
Fig. 3: Experimental parameters and results.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In Proc. IEEE International Conference on Computers, Systems and Signal Processing 175–179 (IEEE, 1984).

  2. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    ADS  MathSciNet  MATH  Google Scholar 

  3. Takeoka, M., Guha, S. & Wilde, M. M. Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun. 5, 5235 (2014).

    Article  ADS  Google Scholar 

  4. Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).

    Article  ADS  Google Scholar 

  5. Yin, H.-L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016).

    Article  ADS  Google Scholar 

  6. Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018).

    Article  ADS  Google Scholar 

  7. Lucamarini, M., Yuan, Z., Dynes, J. & Shields, A. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

    Article  ADS  Google Scholar 

  8. Ma, X., Zeng, P. & Zhou, H. Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018).

    Google Scholar 

  9. Lin, J. & Lütkenhaus, N. Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A 98, 042332 (2018).

    Article  ADS  Google Scholar 

  10. Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    Article  ADS  Google Scholar 

  11. Hwang, W.-Y. Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003).

    Article  ADS  Google Scholar 

  12. Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  Google Scholar 

  13. Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

    Article  ADS  Google Scholar 

  14. Minder, M. et al. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photon. 13, 334–338 (2019).

    Article  ADS  Google Scholar 

  15. Liu, Y. et al. Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123, 100505 (2019).

    Article  ADS  Google Scholar 

  16. Wang, S. et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X 9, 021046 (2019).

    Google Scholar 

  17. Zhong, X., Hu, J., Curty, M., Qian, L. & Lo, H.-K. Proof-of-principle experimental demonstration of twin-field type quantum key distribution. Phys. Rev. Lett. 123, 100506 (2019).

    Article  ADS  Google Scholar 

  18. Yuan, Z. et al. Directly phase-modulated light source. Phys. Rev. X 6, 031044 (2016).

    Google Scholar 

  19. Comandar, L. et al. Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat. Photon. 10, 312–315 (2016).

    Article  ADS  Google Scholar 

  20. Lipka, M., Parniak, M. & Wasilewski, W. Optical frequency locked loop for long-term stabilization of broad-line DFB laser frequency difference. Appl. Phys. B 123, 238 (2017).

    Article  ADS  Google Scholar 

  21. Ma, X. & Razavi, M. Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012).

    Article  ADS  Google Scholar 

  22. Zeng, P., Wu, W. & Ma, X. Symmetry-protected privacy: beating the rate–distance linear bound over a noisy channel. Preprint at https://arxiv.org/abs/1910.05737 (2019).

  23. Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    Article  ADS  Google Scholar 

  24. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Zhou for insightful discussions. This work was supported by the National Key R&D Program of China (2017YFA0303903), the Chinese Academy of Science, the National Fundamental Research Program, the National Natural Science Foundation of China (grants 11875173, 61875182 and 11674193) and Anhui Initiative in Quantum Information Technologies and Fundamental Research Funds for the Central Universities (WK2340000083).

Author information

Authors and Affiliations

Authors

Contributions

X.M., T.-Y.C. and J.-W.P. conceived the research. Y.-A.C. Q.Z., C.-Z.P., X.M., T.-Y.C. and J.-W.P. designed the experiment. X.-T.F., H.Liu and T.-Y.C. carried out the experiment. P.Z., W.W. and X.M. performed the protocol security analysis and data post-processing. M.Z. and Y.-L.T. assisted with the experiment scheme discussion and verification. Y.-J.S. designed and developed the voltage pulse generator. Y.X. programmed the field-programmable gate array logic. W.Z., H.Li, Z.W. and L.Y. designed and fabricated the superconducting nanowire single-photon detector. M.-J.L. and H.C. provided the ultralow-loss fibres. P.Z., X.-T.F., H.Liu, X.M., T.-Y.C. and J.-W.P. co-wrote the manuscript, with input from the other authors. All authors discussed the results and proofread the manuscript.

Corresponding authors

Correspondence to Xiongfeng Ma, Teng-Yun Chen or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, discussion, equations 1–28 and Tables 1–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, XT., Zeng, P., Liu, H. et al. Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photonics 14, 422–425 (2020). https://doi.org/10.1038/s41566-020-0599-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0599-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing