Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response

Abstract

The effective detection of X-ray radiation with low threshold is essential to many medical and industrial applications. Three-dimensional (3D) organolead trihalide and double perovskites have been shown to be suitable for direct X-ray detection. However, the sensitivity and stability of 3D perovskite X-ray detectors are limited by ion motion, and there remains a demand to develop green and stable X-ray detectors with high sensitivity and low detection limit. The emerging low-dimensional perovskites have shown promising optoelectronic properties, featuring good intrinsic stability and reduced ion migration. Inspired by this, we show that our 2D layered perovskite-like (NH4)3Bi2I9 device provides unique anisotropic X-ray detecting performance with different crystal directions, effective suppression of ion migration and a low detection limit of 55 nGyair s−1. These results will motivate new strategies to achieve a high-performance X-ray detector by utilizing 2D layered perovskite or perovskite-like materials, without requiring toxic elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and characterization of the (NH4)3Bi2I9 single crystal.
Fig. 2: Optoelectronic properties of the (NH4)3Bi2I9 single crystal.
Fig. 3: X-ray absorption, charge collection and temperature-dependent conductivity of the (NH4)3Bi2I9 single crystal.
Fig. 4: X-ray detection performance of (NH4)3Bi2I9 single-crystal devices.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. https://doi.org/10.1038/s41566-019-0398-2 (2019).

    Article  ADS  Google Scholar 

  2. Brenner, T. M., Egger, D. A., Kronik, L. K., Hoder, G. H. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    Article  ADS  Google Scholar 

  3. Heiss, W. & Brabec, C. X-ray imaging: perovskites target X-ray detection. Nat. Photon. 10, 288–289 (2016).

    Article  ADS  Google Scholar 

  4. Jeong, M., Jo, W. J., Kim, H. S. & Ha, J. H. Radiation hardness characteristics of Si-PIN radiation detectors. Nucl. Instrum. Methods Phys. Res. A 784, 119–123 (2015).

    Article  ADS  Google Scholar 

  5. Luke, P. N., Rossington, C. S. & Wesela, M. F. Low energy X-ray response of Ge detectors with amorphous Ge entrance contacts. IEEE Trans. Nucl. Sci. 41, 1074–1079 (1994).

    Article  ADS  Google Scholar 

  6. Szeles, C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi B 241, 783–790 (2004).

    Article  ADS  Google Scholar 

  7. Zhao, W. & Rowlands, J. A. X-ray imaging using amorphous selenium: feasibility of a flat panel self-scanned detector for digital radiology. Med. Phys. 22, 1595–1604 (1995).

    Article  Google Scholar 

  8. Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    Article  ADS  Google Scholar 

  9. Heo, J. H. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 30, 1801743 (2018).

    Article  Google Scholar 

  10. Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photon. 9, 444–449 (2015).

    Article  ADS  Google Scholar 

  11. Shrestha, S. et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat. Photon. 11, 436–440 (2017).

    Article  ADS  Google Scholar 

  12. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

    Article  ADS  Google Scholar 

  13. Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 11, 315–321 (2017).

    Article  ADS  Google Scholar 

  14. Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87–91 (2017).

    Article  ADS  Google Scholar 

  15. Dong, Q. et al. Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  Google Scholar 

  16. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  ADS  Google Scholar 

  17. Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015).

    Article  ADS  Google Scholar 

  18. Lui, Y. et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv. Mater. 2018, 1707314 (2018).

    Google Scholar 

  19. Mohan, R. Green bismuth. Nat. Chem. 2, 336 (2010).

    Article  Google Scholar 

  20. Pan, W. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photon. 11, 726–732 (2017).

    Article  ADS  Google Scholar 

  21. Steele, J. A. et al. Photophysical pathways in highly sensitive Cs2AgBiBr6 double-perovskite single-crystal X-ray detectors. Adv. Mater. 2018, 1804450 (2018).

    Article  Google Scholar 

  22. McCall, K. M. et al. α-Particle detection and charge transport characteristics in the A3M2I9 defect perovskites (A = Cs, Rb; M = Bi, Sb). ACS Photonics 5, 3748–3762 (2018).

    Article  Google Scholar 

  23. Sun, Q. et al. Optical and electronic anisotropies in perovskitoid crystals of Cs3Bi2I9 studies of nuclear radiation detection. J. Mater. Chem. A 6, 23388–23395 (2018).

    Article  Google Scholar 

  24. Sun, S. et al. Synthesis, crystal structure and properties of a perovskite-related bismuth phase, (NH4)3Bi2I9. APL Mater. 4, 031101 (2016).

    Article  ADS  Google Scholar 

  25. Xiao, Z., Meng, W., Wang, J., Mitzi, D. B. & Yan, Y. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater. Horiz. 4, 206–216 (2017).

    Article  Google Scholar 

  26. Ji, C. et al. Inch-size single crystal of a lead-free organic–inorganic hybrid perovskite for high-performance photodetector. Adv. Funct. Mater. 28, 1705467 (2018).

    Article  Google Scholar 

  27. Evans, R. D. & Noyau, A. The Atomic Nucleus Vol. 582 (McGraw-Hill, 1955).

  28. Abulikemu, M. et al. Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9. J. Mater. Chem. A 32, 1–24 (2016).

    Google Scholar 

  29. Kawai, T. et al. Optical absorption in band-edge region of (CH3NH3)3Bi2I9 single crystals. J. Phys. Soc. Jpn 65, 1464–1468 (1996).

  30. Ma, Z. et al. Air-stable layered bismuth-based perovskite-like materials: structures and semiconductor properties. Physica B 526, 136–142 (2017).

    Article  ADS  Google Scholar 

  31. Correa-Baena, J. P. et al. A-site cation in inorganic A3Sb2I9 perovskite influences structural dimensionality, exciton binding energy, and solar cell performance. Chem. Mater. 30, 3734–3742 (2018).

    Article  Google Scholar 

  32. Lehner, A. J. et al. Crystal and electronic structures of complex bismuth iodides A3Bi2I9 (A = K, Rb, Cs) Related to perovskite: aiding the rational design of photovoltaics. Chem. Mater. 27, 7137–7148 (2015).

    Article  Google Scholar 

  33. Lee, Y. et al. High-performance perovskite–graphene hybrid photodetector. Adv. Mater. 27, 41–46 (2015).

    Article  Google Scholar 

  34. Kim, K. et al. Purification of CdZnTe by electromigration. J. Appl. Phys. 117, 145702 (2015).

    Article  ADS  Google Scholar 

  35. Devanathan, R., Corrales, L. R., Gao, F. & Weber, W. J. Signal variance in gamma-ray detectors—a review. Nucl. Instrum. Methods Phys. Res. A 565, 637–649 (2006).

    Article  ADS  Google Scholar 

  36. Dvoryankin, V. F. et al. X-ray sensitivity of Cd0.9Zn0.1Te detectors. Tech. Phys. 55, 306–308 (2010).

    Article  Google Scholar 

  37. Kasap, S. O. X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D 33, 2853–2865 (2000).

    Article  ADS  Google Scholar 

  38. Brenner, D. J., Elliston, C. D., Hall, E. J. & Berdon, W. E. Estimated risks of radiationinduced fatal cancer from pediatric CT. Am. J. Roentgenol. 176, 289–296 (2001).

    Article  Google Scholar 

  39. Polischuk, B. T., Shukri, Z., Legros, A. & Rougeot, H. Selenium direct converter structure for static and dynamic X-ray detection in medical imaging applications. Proc. Med. Imag. 1998, 494–504 (1998).

    Google Scholar 

  40. Yun, L. et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2, 1571–1572 (2017).

    Article  Google Scholar 

  41. Shearer, D. R. & Bopaiah, M. Dose rate limitations of integrating survey meters for diagnostic X-ray surveys. Health Phys. 79, S20–S21 (2000).

    Article  Google Scholar 

  42. Clairand, I. et al. Use of active personal dosemeters in interventional radiology and cardiology: tests in laboratory conditions and recommendations—ORAMED project. Radiat. Meas. 46, 1252–1257 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank X. Hua and C. Wolverton at Northwestern University for their insightful discussions on the band structure of the perovskite-like materials, and also L. Bai and Y. Su in Zhejiang University for their assistance with material preparations. The authors acknowledge financial support from the National Key Research and Development Program of China (2017YFA0207700), the National Basic Research Program of China (973Program, 2015CB352003), the Outstanding Youth Fund of Zhejiang Natural Science Foundation of China (LR18F050001), the Natural Science Foundation of China (61804134) and the Natural Science Foundation of Fujian Province (2017J01766).

Author information

Authors and Affiliations

Authors

Contributions

Y.(M.)Y. conceived the idea and supervised the project. Y.(M.)Y. and R.Z. designed the experiments. R.Z. carried out material preparation, characterizations and device fabrication. X.W., W.M. and Y.(M.)Y. set up the measurement facilities for the X-ray detector and photodetector. X.W., W.M. and R.Z. carried out the detector performance characterizations. Y.W., X.C. and L.T. measured the n and k of the crystal. H.Z., L.W. and W.Z. measured the steady-state photoluminescence and transient photoluminescence. J.L. conducted the XRD measurements. R.Z. wrote the first draft of the manuscript, Y.(M.)Y. revised the manuscript with comments from X.L. and all other authors.

Corresponding author

Correspondence to Yang (Michael) Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Supplementary Tables 1–2 and Supplementary references 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, R., Wang, X., Ma, W. et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photonics 13, 602–608 (2019). https://doi.org/10.1038/s41566-019-0466-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0466-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing