Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy

Abstract

Mid-infrared (MIR) microscopy provides rich chemical and structural information about biological samples, without staining. Conventionally, the long MIR wavelength severely limits the lateral resolution owing to optical diffraction; moreover, the strong MIR absorption of water ubiquitous in fresh biological samples results in high background and low contrast. To overcome these limitations, we propose a method that employs photoacoustic detection highly localized with a pulsed ultraviolet laser on the basis of the Grüneisen relaxation effect. For cultured cells, our method achieves water-background suppressed MIR imaging of lipids and proteins at ultraviolet resolution, at least an order of magnitude finer than the MIR diffraction limits. Label-free histology using this method is also demonstrated in thick brain slices. Our approach provides convenient high-resolution and high-contrast MIR imaging, which can benefit the diagnosis of fresh biological samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ultraviolet-localized MIR photoacoustic microscopy (ULM-PAM).
Fig. 2: System characterization.
Fig. 3: Imaging of lipids, proteins and nucleic acids in fibroblast cells.
Fig. 4: Imaging of mouse brain slices.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code that supports the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wetzel, D. L. & LeVine, S. M. Imaging molecular chemistry with infrared microscopy. Science 285, 1224–1225 (1999).

    Article  Google Scholar 

  2. Koenig, J. L. Microspectroscopic Imaging of Polymers (American Chemical Society, 1998).

  3. Prati, S., Joseph, E., Sciutto, G. & Mazzeo, R. New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials. Acc. Chem. Res. 43, 792–801 (2010).

    Article  Google Scholar 

  4. Diem, M., Romeo, M., Boydston-White, S., Miljkovic, M. & Matthaus, C. A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004). Analyst 129, 880–885 (2004).

    Article  ADS  Google Scholar 

  5. Fernandez, D. C., Bhargava, R., Hewitt, S. M. & Levin, I. W. Infrared spectroscopic imaging for histopathologic recognition. Nat. Biotechnol. 23, 469–474 (2005).

    Article  Google Scholar 

  6. Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791 (2014).

    Article  Google Scholar 

  7. Diem, M. et al. Molecular pathology via IR and Raman spectral imaging. J. Biophoton. 6, 855–886 (2013).

    Article  Google Scholar 

  8. Griffiths, P. Fourier transform infrared spectrometry. Science 21, 297–302 (1983).

    Article  ADS  Google Scholar 

  9. Lewis, E. N. et al. Fourier transform spectroscopic imaging using an infrared focal-plane array detector. Anal. Chem. 67, 3377–3381 (1995).

    Article  Google Scholar 

  10. Miller, L. M., Smith, G. D. & Carr, G. L. Synchrotron-based biological microspectroscopy: from the mid-infrared through the far-infrared regimes. J. Biol. Phys. 29, 219–230 (2003).

    Article  Google Scholar 

  11. Nasse, M. J. et al. High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat. Methods 8, 413–416 (2011).

    Article  Google Scholar 

  12. Kole, M. R., Reddy, R. K., Schulmerich, M. V., Gelber, M. K. & Bhargava, R. Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser. Anal. Chem. 84, 10366–10372 (2012).

    Article  Google Scholar 

  13. Haas, J. & Mizaikoff, B. Advances in mid-infrared spectroscopy for chemical analysis. Annu. Rev. Anal. Chem. 9, 45–68 (2016).

    Article  Google Scholar 

  14. Sommer, A. J., Marcott, C., Story, G. M. & Tisinger, L. G. Attenuated total internal reflection infrared mapping microspectroscopy using an imaging microscope. Appl. Spectrosc. 55, 252–256 (2001).

    Article  ADS  Google Scholar 

  15. Chan, K. L. A. & Kazarian, S. G. New opportunities in micro- and macro-attenuated total reflection infrared spectroscopic imaging: spatial resolution and sampling versatility. Appl. Spectrosc. 57, 381–389 (2003).

    Article  ADS  Google Scholar 

  16. Dazzi, A., Prazeres, R., Glotin, F. & Ortega, J. M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 30, 2388–2390 (2005).

    Article  ADS  Google Scholar 

  17. Lu, F., Jin, M. & Belkin, M. A. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photon. 8, 307–312 (2014).

    Article  ADS  Google Scholar 

  18. Dazzi, A. & Prater, C. B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017).

    Article  Google Scholar 

  19. Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).

    Article  ADS  Google Scholar 

  20. Nowak, D. et al. Nanoscale chemical imaging by photoinduced force microscopy. Sci. Adv. 2, e1501571 (2016).

    Article  ADS  Google Scholar 

  21. Furstenberg, R., Kendziora, C. A., Papantonakis, M. R., Nguyen, V. & McGill, R. A. Chemical imaging using infrared photothermal microspectroscopy. In Proceedings of SPIE Defense, Security, and Sensing (eds Druy, M. A. & Crocombe, R. A.) 837411 (SPIE, 2012).

  22. Li, Z., Kuno, M. & Hartland, G. Super-resolution imaging with mid-IR photothermal microscopy on the single particle level. In Proceedings of SPIE Physical Chemistry of Interfaces and Nano-materials XIV (eds Hayes, S. C. & Bittner, E. R.) 954912 (International Society for Optics and Photonics, 2015).

  23. Zhang, D. et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Sci. Adv. 2, e1600521 (2016).

    Article  ADS  Google Scholar 

  24. Li, Z., Aleshire, K., Kuno, M. & Hartland, G. V. Super-resolution far-field infrared imaging by photothermal heterodyne imaging. J. Phys. Chem. B 121, 8838–8846 (2017).

    Article  Google Scholar 

  25. Lu, F.-K. et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc. Natl Acad. Sci. USA 112, 11624–11629 (2015).

    Article  ADS  Google Scholar 

  26. Cheng, J.-X. & Xie, X. S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350, aaa8870 (2015).

    Article  Google Scholar 

  27. Ji, M. et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci. Transl. Med. 7, 309ra163 (2015).

    Article  Google Scholar 

  28. Gong, L. & Wang, H. Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study. Phys. Rev. A 90, 13818 (2014).

    Article  ADS  Google Scholar 

  29. Ruchira Silva, W., Graefa, C. T. & Frontiera, R. R. Toward label-free super-resolution microscopy. ACS Photon. 3, 79–86 (2016).

    Article  Google Scholar 

  30. Rockley, M. G. Fourier-transformed infrared photoacoustic spectroscopy of polystyrene film. Chem. Phys. Lett. 68, 455–456 (1979).

    Article  ADS  Google Scholar 

  31. Patel, C. K. N. & Tam, A. C. Pulsed optoacoustic spectroscopy of condensed matter. Rev. Mod. Phys. 53, 517–550 (1981).

    Article  ADS  Google Scholar 

  32. Tam, A. C. Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381–431 (1986).

    Article  ADS  Google Scholar 

  33. Michaelian, K. H. Photoacoustic Infrared Spectroscopy (Wiley, 2003).

  34. Sim, J. Y., Ahn, C.-G., Jeong, E.-J. & Kim, B. K. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products. Sci. Rep. 8, 1059 (2018).

    Article  ADS  Google Scholar 

  35. Wang, L., Zhang, C. & Wang, L. V. Grueneisen relaxation photoacoustic microscopy. Phys. Rev. Lett. 113, 174301 (2014).

    Article  ADS  Google Scholar 

  36. Lai, P., Wang, L., Tay, J. W. & Wang, L. V. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photon. 9, 126–132 (2015).

    Article  ADS  Google Scholar 

  37. Kunitz, M. Crystalline desoxyribonuclease; isolation and general properties; spectrophotometric method for the measurement of desoxyribonuclease activity. J. Gen. Physiol. 33, 349–362 (1950).

    Article  Google Scholar 

  38. Beaven, G. H. & Holiday, E. R. Ultraviolet absorption spectra of proteins and amino acids. Adv. Protein Chem 7, 319–386 (1952).

    Article  Google Scholar 

  39. Yao, D.-K., Maslov, K. I., Wang, L. V., Chen, R. & Zhou, Q. Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei. J. Biomed. Opt. 17, 056004 (2012).

    Article  ADS  Google Scholar 

  40. Quickenden, T. I. & Irvin, J. A. The ultraviolet absorption spectrum of liquid water. J. Chem. Phys. 72, 4416–4428 (1980).

    Article  ADS  Google Scholar 

  41. Wong, T. T. W. et al. Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. Sci. Adv. 3, e1602168 (2017).

    Article  ADS  Google Scholar 

  42. Danielli, A. et al. Label-free photoacoustic nanoscopy. J. Biomed. Opt. 19, 086006 (2014).

    Article  ADS  Google Scholar 

  43. Xu, S., Scherer, G. W., Mahadevan, T. S. & Garofalini, S. H. Thermal expansion of confined water. Langmuir 25, 5076–5083 (2009).

    Article  Google Scholar 

  44. Larina, I. V., Larin, K. V. & Esenaliev, R. O. Real-time optoacoustic monitoring of temperature in tissues. J. Phys. D 38, 2633–2639 (2005).

    Article  ADS  Google Scholar 

  45. Shah, J. et al. Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J. Biomed. Opt. 13, 034024 (2008).

    Article  ADS  Google Scholar 

  46. Yao, J., Ke, H., Tai, S., Zhou, Y. & Wang, L. V. Absolute photoacoustic thermometry in deep tissue. Opt. Lett. 38, 5228–5231 (2013).

    Article  ADS  Google Scholar 

  47. Yao, D.-K., Maslov, K., Shung, K. K., Zhou, Q. & Wang, L. V. In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. Opt. Lett. 35, 4139–4141 (2010).

    Article  ADS  Google Scholar 

  48. Hale, G. M. & Querry, M. R. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 12, 555–563 (1973).

    Article  ADS  Google Scholar 

  49. Simanovskii, D. M. et al. Cellular tolerance to pulsed hyperthermia. Phys. Rev. E 74, 011915 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  50. Mata, A., Fleischman, A. J. & Roy, S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdev. 7, 281–293 (2005).

    Article  Google Scholar 

  51. Hwang, J. et al. Development of photoacoustic phantoms towards quantitative evaluation of photoacoustic imaging devices. In SPIE Photonics West 10494–77 (SPIE, 2018).

  52. Schmid, F.-X. Biological macromolecules: UV-visible spectrophotometry in Encyclopedia of Life Sciences (Macmillan Publishers Ltd, Nature Publishing Group, 2001).

  53. Lasch, P., Boese, M., Pacifico, A. & Diem, M. FT-IR spectroscopic investigations of single cells on the subcellular level. Vibr. Spectrosc. 28, 147–157 (2002).

    Article  Google Scholar 

  54. Wood, B. R. The importance of hydration and DNA conformation in interpreting infrared spectra of cells and tissues. Chem. Soc. Rev. 45, 1980–1998 (2016).

    Article  Google Scholar 

  55. Wang, L. V. & Wu, H. Biomedical Optics: Principles and Imaging (Wiley-Interscience, 2007).

  56. Song, L., Maslov, K. & Wang, L. V. Multifocal optical-resolution photoacoustic microscopy in vivo. Opt. Lett. 36, 1236–1238 (2011).

    Article  ADS  Google Scholar 

  57. Imai, T. et al. High-throughput ultraviolet photoacoustic microscopy with multifocal excitation. J. Biomed. Opt. 23, 036007 (2018).

    Article  ADS  Google Scholar 

  58. Evans, C. L. & Xie, X. S. Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 1, 883–909 (2008).

    Article  Google Scholar 

  59. Zhang, C., Zhang, D. & Cheng, J.-X. Coherent Raman scattering microscopy in biology and medicine. Annu. Rev. Biomed. Eng. 17, 415–445 (2015).

    Article  Google Scholar 

  60. Sakdinawat, A. & Attwood, D. Nanoscale X-ray imaging. Nat. Photon. 4, 840–848 (2010).

    Article  ADS  Google Scholar 

  61. Berglund, M., Rymell, L., Peuker, M., Wilhein, T. & Hertz, H. M. Compact water-window transmission X-ray microscopy. J. Microsc. 197, 268–273 (2000).

    Article  Google Scholar 

  62. Meyer-Ilse, W. et al. High resolution protein localization using soft X-ray microscopy. J. Microsc. 201, 395–403 (2001).

    Article  MathSciNet  Google Scholar 

  63. Xiang, L., Tang, S., Ahmad, M. & Xing, L. High resolution X-ray-induced acoustic tomography. Sci. Rep. 6, 26118 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Pleitez and T. Imai for helping with the system set-up and discussion, J. Ballard for editing of the manuscript and K. Briggman for helpful discussions. Certain commercial equipment, instruments and materials are identified in this paper to specify the experimental procedure adequately; this is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose. This work was sponsored by National Institutes of Health grants DP1 EB016986 (NIH Director’s Pioneer Award), R01 CA186567 (NIH Director’s Transformative Research Award), U01 NS090579 (NIH BRAIN Initiative) and U01 NS099717 (NIH BRAIN Initiative).

Author information

Authors and Affiliations

Authors

Contributions

J.S., K.M. and L.V.W. designed the experiment. J.S., T.T.W.W., Y.H. and R.Z. contributed to the system construction. J.S. and T.T.W.W. prepared the brain slices. Y.H. prepared the cell culture. C.S.Y. and J.H. designed and prepared the CNT pattern on a MgF2 substrate. L.L. helped with LFB staining. J.S., K.M., T.T.W.W., Y.H. and L.L. were involved in discussions. J.S. performed the experiment and data analysis. L.V.W supervised the project. All authors were involved in manuscript preparation.

Corresponding author

Correspondence to Lihong V. Wang.

Ethics declarations

Competing interests

L.V.W. and K.M. have financial interests in Microphotoacoustics, Inc., CalPACT, LLC and Union Photoacoustic Technologies, Ltd, which did not support this work.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work and Supplementary Figures 1–6.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Wong, T.T.W., He, Y. et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat. Photonics 13, 609–615 (2019). https://doi.org/10.1038/s41566-019-0441-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0441-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing