Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable plasmons in ultrathin metal films

Abstract

The physics of electrons, photons and their plasmonic interactions changes greatly when one or more dimensions are reduced down to the nanometre scale1. For example, graphene shows unique electrical, optical and plasmonic properties, which are tunable through gating or chemical doping2,3,4,5. Similarly, ultrathin metal films (UTMFs) down to atomic thickness can possess new quantum optical effects6,7, peculiar dielectric properties8 and predicted strong plasmons9,10. However, truly two-dimensional plasmonics in metals has so far been elusive because of the difficulty in producing large areas of sufficiently thin continuous films. Thanks to a deposition technique that allows percolation even at 1 nm thickness, we demonstrate plasmons in few-nanometre-thick gold UTMFs, with clear evidence of new dispersion regimes and large electrical tunability. Resonance peaks at wavelengths of 1.5–5 μm are shifted by hundreds of nanometres and amplitude-modulated by tens of per cent through gating using relatively low voltages. The results suggest ways to use metals in plasmonic applications, such as electro-optic modulation, biosensing and smart windows.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ultrathin metal films.
Fig. 2: Infrared plasmons in ultrathin metal films.
Fig. 3: Tunable plasmons in ultrathin metal films.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the main text and the supplementary materials. Any relevant information related to the study is available from the corresponding author upon reasonable request.

References

  1. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  ADS  Google Scholar 

  2. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  3. Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  ADS  Google Scholar 

  4. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article  ADS  Google Scholar 

  5. Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    Article  ADS  Google Scholar 

  6. Qian, H., Xiao, Y. & Liu, Z. Giant Kerr response of ultrathin gold films from quantum size effect. Nat. Commun. 7, 13153 (2016).

    Article  ADS  Google Scholar 

  7. Dryzek, J. & Czapla, A. Quantum size effect in optical spectra of thin metallic films. Phys. Rev. Lett. 58, 721–724 (1987).

    Article  ADS  Google Scholar 

  8. Hövel, M., Gompf, B. & Dressel, M. Dielectric properties of ultrathin metal films around the percolation threshold. Phys. Rev. B 81, 035402 (2010).

    Article  ADS  Google Scholar 

  9. Manjavacas, A. & García de Abajo, F. J. Tunable plasmons in atomically thin gold nanodisks. Nat. Commun. 5, 3548 (2014).

    Article  ADS  Google Scholar 

  10. García de Abajo, F. J. & Manjavacas, A. Plasmonics in atomically thin materials. Faraday Discuss. 178, 87–107 (2015).

    Article  ADS  Google Scholar 

  11. Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011).

    Article  ADS  Google Scholar 

  12. Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329 (2013).

    Article  Google Scholar 

  13. Lu, Y., Huang, J. Y., Wang, C., Sun, S. & Lou, J. Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 5, 218–224 (2010).

    Article  ADS  Google Scholar 

  14. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  15. Nagpal, P., Lindquist, N. C., Oh, S. H. & Norris, D. J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594–597 (2009).

    Article  ADS  Google Scholar 

  16. Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photon. 1, 402–406 (2007).

    Article  ADS  Google Scholar 

  17. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442–453 (2008).

    Article  ADS  Google Scholar 

  18. Brown, A. M., Sheldon, M. T. & Atwater, H. A. Electrochemical tuning of the dielectric function of Au nanoparticles. ACS Photonics 2, 459–464 (2015).

    Article  Google Scholar 

  19. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

    Article  ADS  Google Scholar 

  20. Vogt, K. W., Kohl, P. A., Carter, W. B., Bell, R. A. & Bottomley, L. A. Characterization of thin titanium oxide adhesion layers on gold: resistivity, morphology, and composition. Surf. Sci. 301, 203–213 (1994).

    Article  ADS  Google Scholar 

  21. Dalacu, D. & Martinu, L. Optical properties of discontinuous gold films: finite-size effects. J. Opt. Soc. Am. B 18, 85–92 (2001).

    Article  ADS  Google Scholar 

  22. Formica, N. et al. Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer. ACS Appl. Mater. Interfaces 5, 3048–3053 (2013).

    Article  Google Scholar 

  23. Jarrett, D. N. & Ward, L. Optical properties of discontinuous gold films. J. Phys. D 9, 10 (1976).

    Article  Google Scholar 

  24. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Springer, 1995).

  25. Brandt, T., Hövel, M., Gompf, B. & Dressel, M. Temperature- and frequency-dependent optical properties of ultrathin Au films. Phys. Rev. B 78, 205409 (2008).

    Article  ADS  Google Scholar 

  26. Yu, R., Pruneri, V. & García de Abajo, F. J. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas. Sci. Rep. 6, 32144 (2016).

    Article  ADS  Google Scholar 

  27. Laref, S. et al. Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study. Opt. Express 21, 11827–11838 (2013).

    Article  ADS  Google Scholar 

  28. Campbell, S. D. et al. Anisotropic permittivity of ultra-thin crystalline Au films: impacts on the plasmonic response of metasurfaces. Appl. Phys. Lett. 103, 091106 (2013).

    Article  ADS  Google Scholar 

  29. Kossoy, A. et al. Optical and structural properties of ultra-thin gold films. Adv. Opt. Mater. 3, 71–77 (2015).

    Article  Google Scholar 

  30. Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394–399 (2013).

    Article  ADS  Google Scholar 

  31. Petach, T. A., Lee, M., Davis, R. C., Mehta, A. & Goldhaber-Gordon, D. Mechanism for the large conductance modulation in electrolyte-gated thin gold films. Phys. Rev. B 90, 081108 (2014).

    Article  ADS  Google Scholar 

  32. Kim, J. T., Choi, H., Choi, Y. & Cho, J. H. Ion-gel-gated graphene optical modulator with hysteretic behavior. ACS Appl. Mater. Interfaces 10, 1836–1845 (2018).

    Article  Google Scholar 

  33. Daghero, D. et al. Large conductance modulation of gold thin films by huge charge injection via electrochemical gating. Phys. Rev. Lett. 108, 066807 (2012).

    Article  ADS  Google Scholar 

  34. Leandro, L., Malureanu, R., Rozlosnik, N. & Lavrinenko, A. Ultrathin, ultrasmooth gold layer on dielectrics without the use of additional metallic adhesion layers. ACS Appl. Mater. Interfaces 7, 5797–5802 (2015).

    Article  Google Scholar 

  35. Chen, C. F. et al. Controlling inelastic light scattering quantum pathways in graphene. Nature 471, 617–620 (2011).

    Article  ADS  Google Scholar 

  36. Yu, R., Liz-Marzán, L. M. & García de Abajo, F. J. Universal analytical modeling of plasmonic nanoparticles. Chem. Soc. Rev. 46, 6710–6724 (2017).

    Article  Google Scholar 

  37. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge K. Kalavoor, M. Marchena and J. Osmond for their help in experiments and for discussions. We acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through the “Severo Ochoa” programme for Centers of Excellence in R&D (SEV-2015–0522), OPTO-SCREEN (TEC2016–75080-R), and grant no. MAT2017–88492-R, from FundacióPrivadaCellex, from Generalitat de Catalunya through the CERCA programme, from AGAUR 2017 SGR 1634, and from the European Union Seventh Framework Programme under grant agreement no. 609416 ICFONest. J.C.-F. also thanks MINECO for his research grant funded by means of the programme Juan de la Cierva (grant no. FPDI-2013–18078). F.J.G.A. acknowledges support from the European Research Council (Advanced Grant No. 789104-eNANO).

Author information

Authors and Affiliations

Authors

Contributions

F.J.G.A. and V.P. proposed the research project. V.P. coordinated the experiments and with the help of R.A.M. and D.R. designed them. R.A.M. and D.R. with the help of J.C.-F., D.S.G., R. Yongsunthon, D.E.B. and A.R. carried out the experiments and characterizations. R.Yu developed the theoretical model and performed all the simulations under supervision of F.J.G.A. D.R., V.P., F.J.G.A., R. Yu and R.A.M. wrote the manuscript. All authors contributed to the interpretation of the results and manuscript writing.

Corresponding authors

Correspondence to F. Javier García de Abajo or Valerio Pruneri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, Supplementary Figures 1–9, Supplementary Table 1 and Supplementary References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maniyara, R.A., Rodrigo, D., Yu, R. et al. Tunable plasmons in ultrathin metal films. Nat. Photonics 13, 328–333 (2019). https://doi.org/10.1038/s41566-019-0366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0366-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing