Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interferometry of dipole phase in high harmonics from solids

Abstract

Understanding the temporal profiles of high harmonics is essential for their applications in attosecond science1,2. Microscopically, the dipole phase plays an important role in determining the high-harmonic emission phase2,3,4. In gas-phase high-harmonic generation, the tunnel-ionized electron spends much of its travel time in the continuum—far from the parent ion, where it accumulates the dipole phase5,6. Therefore, the atomic dipole phase is largely independent of the target atom3. In solid-state high-harmonic generation7,8,9,10,11, since the driven electron experiences a periodic potential during the entire travel time, the dipole phase may depend on the electronic structures of source materials9,12,13,14. Here, we employ an interferometric method to characterize high harmonics from magnesium oxide and quartz crystals. We measure material-dependent intensity-induced high-harmonic phase delays that we attribute to the intensity-induced changes in the dipole phase originating from the interband polarization10,15,16. The material-dependent dipole phase can provide a robust platform for high-harmonic spectroscopy of solids.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Homodyne high-harmonic interferometry of MgO crystals.
Fig. 2: Intensity-induced relative fringe shifts for the 15th harmonic from MgO pumped by 1,320 nm pulses.
Fig. 3: Intensity-dependent relative phase shifts due to the dipole phase and the propagation effects measured in MgO pumped by 1,320 nm pulses.
Fig. 4: Simulation of the intensity-induced changes of the dipole phase.
Fig. 5: Intensity-induced relative fringe shifts in high harmonics from MgO and SiO2 pumped by 800 nm pulses.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).

    Article  Google Scholar 

  2. Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).

    Article  ADS  Google Scholar 

  3. Lewenstein, M., Salières, P. & L’Huillier, A. Phase of the atomic polarization in high-order harmonic generation. Phys. Rev. A 52, 4747–4754 (1995).

    Article  ADS  Google Scholar 

  4. Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon. 8, 530–536 (2014).

    Article  ADS  Google Scholar 

  5. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  6. Schafer, K. J., Yang, B., DiMauro, L. F. & Kulander, K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    Article  ADS  Google Scholar 

  7. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  Google Scholar 

  8. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

    Article  ADS  Google Scholar 

  9. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    Article  ADS  Google Scholar 

  10. Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015).

    Article  ADS  Google Scholar 

  11. Ndabashimiye, G. et al. Solid-state harmonics beyond the atomic limit. Nature 534, 520–523 (2016).

    Article  ADS  Google Scholar 

  12. Vampa, G. et al. All-optical reconstruction of crystal band structure. Phys. Rev. Lett. 115, 193603 (2015).

    Article  ADS  Google Scholar 

  13. You, Y. S., Reis, D. A. & Ghimire, S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. 13, 345–349 (2016).

    Article  Google Scholar 

  14. Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2016).

    Article  Google Scholar 

  15. Wu, M., Ghimire, S., Reis, D. A., Schafer, K. J. & Gaarde, M. B. High-harmonic generation from Bloch electrons in solids. Phys. Rev. A 91, 043839 (2015).

    Article  ADS  Google Scholar 

  16. You, Y. S. et al. Laser waveform control of extreme ultraviolet high harmonics from solids. Opt. Lett. 42, 1816–1819 (2017).

    Article  ADS  Google Scholar 

  17. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    Article  ADS  Google Scholar 

  18. Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359–363 (2016).

    Article  ADS  Google Scholar 

  19. You, Y. S. et al. High-harmonic generation in amorphous solids. Nat. Commun. 8, 724 (2017).

    Article  ADS  Google Scholar 

  20. Yoshikawa, N., Tamaya, T. & Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  21. Garg, M., Kim, H. Y. & Goulielmakis, E. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz. Nat. Photon. 12, 291–296 (2018).

    Article  ADS  Google Scholar 

  22. Han, S. et al. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure. Nat. Commun. 7, 13105 (2016).

    Article  ADS  Google Scholar 

  23. Sivis, M. et al. Tailored semiconductors for high-harmonic optoelectronics. Science 357, 303–306 (2017).

    Article  ADS  Google Scholar 

  24. Salières, P., L’Huillier, A. & Lewenstein, M. Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995).

    Article  ADS  Google Scholar 

  25. Sommer, A. et al. Attosecond nonlinear polarization and light–matter energy transfer in solids. Nature 534, 86–90 (2016).

    Article  ADS  Google Scholar 

  26. Wu, M. et al. Orientation dependence of temporal and spectral properties of high-order harmonics in solids. Phys. Rev. A 96, 063412 (2017).

    Article  ADS  Google Scholar 

  27. Zerne, R. et al. Phase-locked high-order harmonic sources. Phys. Rev. Lett. 79, 1006–1009 (1997).

    Article  ADS  Google Scholar 

  28. Camper, A. et al. High-harmonic phase spectroscopy using a binary diffractive optical element. Phys. Rev. A 89, 043843 (2014).

    Article  ADS  Google Scholar 

  29. Carpeggiani, P. et al. Vectorial optical field reconstruction by attosecond spatial interferometry. Nat. Photon. 11, 383–389 (2017).

    Article  ADS  Google Scholar 

  30. Corsi, C., Pirri, A., Sali, E., Tortora, A. & Bellini, M. Direct interferometric measurement of the atomic dipole phase in high-order harmonic generation. Phys. Rev. Lett. 97, 023901 (2006).

    Article  ADS  Google Scholar 

  31. Vampa, G., You, Y., Liu, H., Ghimire, S. & Reis, D. A. Observation of backward high-harmonic emission from solids. Opt. Express 26, 12210–12218 (2018).

    Article  ADS  Google Scholar 

  32. Vampa, G. et al. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 113, 073901 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division through the Early Career Research Program. D.A.R. acknowledges support from the AMOS Program in the Chemical Sciences, Geosciences, and Biosciences Division. We thank H. Liu, G. Vampa and B. Iwan for many fruitful discussions and for assisting in experiments.

Author information

Authors and Affiliations

Authors

Contributions

J.L., E.F.C. and S.G. conceived the experiments. J.L. and E.F.C. conducted the measurements. J.L. analysed the data and performed the simulations. Y.S.Y. assisted in the measurements and simulations. J.L., E.F.C., Y.S.Y., D.A.R. and S.G. contributed to the interpretation of the results and preparation of the manuscript.

Corresponding authors

Correspondence to Jian Lu or Shambhu Ghimire.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work and Supplementary Figures 1–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Cunningham, E.F., You, Y.S. et al. Interferometry of dipole phase in high harmonics from solids. Nature Photon 13, 96–100 (2019). https://doi.org/10.1038/s41566-018-0326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0326-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing