Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces

Subjects

Abstract

The energy of an electromagnetic wave is converted as the wave passes through a temporal boundary. Thus, effective temporal control of the medium is critical for frequency conversion. Here, we propose rapidly time-variant metasurfaces as a frequency-converting platform and experimentally demonstrate their efficacy at terahertz frequencies. The proposed metasurface is designed for the sudden merging of two distinct metallic meta-atoms into a single one upon ultrafast optical excitation. This sudden merging creates a spectrally designed temporal boundary on the metasurface, by which the frequency conversion can be achieved and engineered. Interestingly, the time delay between the abrupt temporal boundary and the input terahertz pulse is found to be strongly related to the phase of the converted wave as well as its amplitude. As the proposed scheme does not rely on the nonlinearity, it may be particularly advantageous for the frequency conversion of waves with weak intensities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of frequency conversion in time-variant metasurfaces.
Fig. 2: Schematic of frequency conversion process of a proposed time-variant metasurface.
Fig. 3: Linearity of frequency conversion in the time-variant metasurface.
Fig. 4: Trajectories of complex amplitudes for the converted field with respect to the time delay.
Fig. 5: Power spectral densities and trajectories of the complex amplitude of the converted field.
Fig. 6: Steering and focusing of the converted wave from the time-variant metasurfaces.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Morgenthaler, F. R. Velocity modulation of electromagnetic waves. IRE Trans. Microw. Theory Tech. 6, 167–171 (1958).

    Article  ADS  Google Scholar 

  2. Felsen, L. B. & Whitman, G. M. Wave propagation in time-varying media. IEEE Trans. Antennas Propag. AP-18, 242–253 (1970).

    Article  ADS  Google Scholar 

  3. Fante, R. L. Transmission of electromagnetic waves into time-varying media. IEEE Trans. Antennas Propag. AP-19, 417–424 (1971).

    Article  ADS  Google Scholar 

  4. Jiang, C.-L. Wave propagation and dipole radiation in a suddenly created plasma. IEEE Trans. Antennas Propag. 23, 83–90 (1975).

    Article  ADS  Google Scholar 

  5. Wilks, S. C., Dawson, J. M. & Mori, W. B. Frequency up-conversion of electromagnetic radiation with use of an overdense plasma. Phys. Rev. Lett. 61, 337–340 (1988).

    Article  ADS  Google Scholar 

  6. Cirone, M., Rzazewski, K. & Mostowski, J. Photon generation by time-dependent dielectric: a soluble model. Phys. Rev. A. 55, 62 (1997).

    Article  ADS  Google Scholar 

  7. Mendonca, J. T. & Shukla, P. K. Time refraction and time reflection: two basic concepts. Phys. Scr. 65, 160 (2002).

    Article  ADS  Google Scholar 

  8. Reed, E. J., Soljacic, M. & Joannopoulos, J. D. Color of shock waves in photonic crystals. Phys. Rev. Lett. 90, 203904 (2003).

    Article  ADS  Google Scholar 

  9. Nerukh, A. G., Sewell, P. & Benson, T. M. Volterra integral equations for nonstationary electromagnetic processes in time-varying dielectric waveguides. J. Lightwave Technol. 22, 1408–1419 (2004).

    Article  ADS  Google Scholar 

  10. Gaburro, Z. et al. Photon energy lifter. Opt. Express 14, 7270–7278 (2006).

    Article  ADS  Google Scholar 

  11. Biancalana, F., Amann, A., Uskov, A. & O’Reilly, E. Dynamics of light propagation in spatiotemporal dielectric structures. Phys. Rev. E 75, 046607 (2007).

    Article  ADS  Google Scholar 

  12. Kalluri, D. K. Electromagnetics of Time Varying Complex Media 2nd edn (CRC Press, Boca Raton, 2010).

  13. Xiao, Y., Agrawal, G. P. & Maywar, D. N. Spectral and temporal changes of optical pulses propagating through time-varying linear media. Opt. Lett. 36, 505–507 (2011).

    Article  ADS  Google Scholar 

  14. Yablonovitch, E. Spectral broadening in the light transmitted through a rapidly growing plasma. Phys. Rev. Lett. 31, 877–879 (1973).

    Article  ADS  Google Scholar 

  15. Joshi, C. J. et al. Demonstration of the frequency upshifting of microwave radiation by rapid plasma creation. IEEE Trans. Plasma Sci. 18, 814 (1990).

    Article  ADS  Google Scholar 

  16. Savage, R. L., Josh, C. J. & Mori, W. B. Frequency upconversion of electromagnetic radiation upon transmission into an ionization front. Phys. Rev. Lett. 68, 946–949 (1992).

    Article  ADS  Google Scholar 

  17. Kuo, S. P., Ren, A. & Schmidt, G. Frequency downshift in rapidly ionizing media. Phys. Rev. E 49, 3310 (1994).

    Article  ADS  Google Scholar 

  18. Nishida, A. et al. Experimental observation of frequency up-conversion by flash ionization. Appl. Phys. Lett. 101, 161118 (2012).

    Article  ADS  Google Scholar 

  19. Yacomotti, A. M. et al. Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-Q photonic crystal resonators. Phys. Rev. Lett. 96, 093901 (2006).

    Article  ADS  Google Scholar 

  20. Notomi, M. & Mitsugi, S. Wavelength conversion via dynamic refractive index tuning of a cavity. Phys. Rev. A 73, 05180 (2006).

    Article  Google Scholar 

  21. Tanabe, T., Notomi, M., Taniyama, H. & Kuramochi, E. Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning. Phys. Rev. Lett. 102, 043907 (2009).

    Article  ADS  Google Scholar 

  22. Preble, S. F., Xu, Q. & Lipson, M. Changing the colour of light in a silicon resonator. Nat. Photon. 1, 293–296 (2007).

    Article  ADS  Google Scholar 

  23. Upham, J., Tanaka, Y., Asano, T. & Noda, S. On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides. Appl. Phys. Exp. 3, 062001 (2010).

    Article  ADS  Google Scholar 

  24. Kampfrath, T. et al. Ultrafast adiabatic manipulation of slow light in a photonic crystal. Phys. Rev. A 81, 043837 (2010).

    Article  ADS  Google Scholar 

  25. Fan, L. et al. Integrated optomechanical single-photon frequency shifter. Nat. Photon. 10, 766–770 (2016).

    Article  ADS  Google Scholar 

  26. Chen, H.-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

    Article  ADS  Google Scholar 

  27. Chen, H.-T. et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photon. 2, 295–298 (2008).

    Article  Google Scholar 

  28. Katko, A. R. et al. Phase conjugation and negative refraction using nonlinear active metamaterials. Phys. Rev. Lett. 105, 123905 (2010).

    Article  ADS  Google Scholar 

  29. Katko, A. R., Barrett, J. P. & Cummer, S. A. Time-varying transistor-based metamaterial for tunability, mixing, and efficient phase conjugation. J. Appl. Phys. 115, 144501 (2014).

    Article  ADS  Google Scholar 

  30. Su, X. et al. Dynamic mode coupling in terahertz metamaterials. Sci. Rep. 5, 10823 (2015).

    Article  ADS  Google Scholar 

  31. Shaltout, A., Kildishev, A. & Shalaev, V. Time-varying metasurfaces and Lorentz non-reciprocity. Opt. Mater. Express 5, 2459–2467 (2015).

    Article  ADS  Google Scholar 

  32. Liu, Z., Li, Z. & Aydin, K. Time-varying metasurfaces based on graphene microribbon arrays. ACS Photon. 3, 2035–2039 (2016).

    Article  Google Scholar 

  33. Sivan, Y., Ctistis, G., Yüce, E. & Mosk, A. P. Femtosecond-scale switching based on excited free-carriers. Opt. Express 23, 16416–16428 (2015).

    Article  ADS  Google Scholar 

  34. Shi, Y., Zhou, Q.-l, Zhang, C. & Jin, B. Ultrafast high-field carrier transport in GaAs measured by femtosecond pump-terahertz probe spectroscopy. Appl. Phys. Lett. 93, 121115 (2008).

    Article  ADS  Google Scholar 

  35. Li, G. et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater. 14, 607–612 (2015).

    Article  ADS  Google Scholar 

  36. Tymchenko, M. et al. Gradient nonlinear Pancharatnam–Berry metasurfaces. Phys. Rev. Lett. 115, 207403 (2015).

    Article  ADS  Google Scholar 

  37. Keren-Zur, S., Avayu, O., Michaeli, L. & Ellenbogen, T. Nonlinear beam shaping with plasmonic metasurfaces. ACS Photon. 3, 117–123 (2016).

    Article  Google Scholar 

  38. Almeida, E., Bitton, O. & Prior, Y. Nonlinear metamaterials for holography. Nat. Commun. 7, 12533 (2016).

    Article  ADS  Google Scholar 

  39. Ye, W. et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 7, 11930 (2016).

    Article  ADS  Google Scholar 

  40. Franken, P. A., Hill, A. E., Peters, C. E. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

    Article  ADS  Google Scholar 

  41. Klein, M. W., Enkrich, C., Wegener, M. & Linden, S. Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006).

    Article  ADS  Google Scholar 

  42. Luo, L. et al. Broadband terahertz generation from metamaterials. Nat. Commun. 5, 3055 (2014).

    Article  Google Scholar 

  43. Lapine, M., Shadrivov, I. V. & Kivshar, Y. S. Colloquium: nonlinear metamaterials. Rev. Mod. Phys. 86, 1093–1123 (2014).

    Article  ADS  Google Scholar 

  44. Mayer, A. & Keilmann, F. Far-infrared nonlinear optics. I. χ(2) near ionic resonance. Phys. Rev. B 33, 6954–6961 (1986).

    Article  ADS  Google Scholar 

  45. Mayer, A. & Keilmann, F. Far-infrared nonlinear optics. II. χ(3) contributions from the dynamics of free carriers in semiconductors. Phys. Rev. B 33, 6962–6968 (1986).

    Article  ADS  Google Scholar 

  46. Winnerl, S. et al. Frequency doubling and tripling of terahertz radiation in a GaAs/AlAs superlattice due to frequency modulation of Bloch oscillations. Appl. Phys. Lett. 77, 1259–1261 (2000).

    Article  ADS  Google Scholar 

  47. Dekorsy, T. et al. Infrared-phonon–polariton resonance of the nonlinear susceptibility in GaAs. Phys. Rev. Lett. 90, 055508 (2003).

    Article  ADS  Google Scholar 

  48. Bowlan, P. et al. Ultrafast terahertz response of multilayer graphene in the nonperturbative regime. Phys. Rev. B 89, 041408 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Yu and X. Piao for helpful discussions. This work was supported by the National Research Foundation of Korea (NRF) through the government of Korea (MSIP; grant no. NRF-2017R1A2B3012364, 2017M3C1A3013923). The work was also supported by the Center for Advanced Meta-Materials (CAMM) funded by Korea Government (MSIP) as Global Frontier Project (NRF-2014M3A6B3063709).

Author information

Authors and Affiliations

Authors

Contributions

K.L., J.S. and B.M. conceived the original idea. J.S., B.K. and J.P. fabricated metasurface samples and terahertz bandpass filters. K.L., J.S. and J.P. performed the measurements. J.S. performed the finite-difference time-domain simulations. K.L., J.S., J.P., W.J., F.R. and B.M. discussed the theoretical and experimental results. K.L., J.S. and B.M. wrote the manuscript, and all authors provided feedback.

Corresponding author

Correspondence to Bumki Min.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains supplementary figures and additional information about the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Son, J., Park, J. et al. Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces. Nature Photon 12, 765–773 (2018). https://doi.org/10.1038/s41566-018-0259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0259-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing