Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terahertz dynamics of electron–vibron coupling in single molecules with tunable electrostatic potential

Abstract

Clarifying electronic and vibronic properties at the individual molecule level provides key insights for future chemistry, nanoelectronics and quantum information technologies. However, information obtained by conventional single-molecule transport measurements is based on time-averaged properties. Here, we report on terahertz (THz) spectroscopy of single fullerene molecules by using a single-molecule transistor geometry. From the time-domain THz autocorrelation measurements, we obtained THz spectra associated with the THz-induced centre-of-mass oscillation of the molecules. The observed spectra reflect the potential profile experienced by the molecule on the metal surface when the number of electrons on the molecule fluctuates by one during the single-electron tunnelling process. Such an ultra-high sensitivity to the electronic/vibronic structures of a single molecule on the addition/removal of a single electron has been achieved as a result of using THz spectroscopy in the single-molecule transistor geometry. This scheme provides an opportunity to investigate the ultrafast THz dynamics of subnanometre-scale systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Set-up for single-molecule terahertz spectroscopy.
Fig. 2: Teraherz autocorrelation measurements of a single C60 molecule.
Fig. 3: Vibron-assisted tunnelling in a C60 single-molecule transistor.
Fig. 4: Calculated interaction energy for a C60 molecule on a gold surface.

Similar content being viewed by others

References

  1. van Exter, M., Fattinger, C. & Grischkowsky, D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 14, 1128–1130 (1989).

    Article  ADS  Google Scholar 

  2. Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Measuring intramolecular charge transfer via coherent generation of THz radiation. J. Phys. Chem. A 106, 878–883 (2002).

    Article  Google Scholar 

  3. Jepsen, P. U. & Clark, S. J. Precise ab-initio prediction of terahertz vibrational modes in crystalline systems. Chem. Phys. Lett. 442, 275–280 (2007).

    Article  ADS  Google Scholar 

  4. Park, H. et al. Nanomechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000).

    Article  ADS  Google Scholar 

  5. Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003).

    Article  ADS  Google Scholar 

  6. Osorio, E. A. et al. Electronic excitations of a single molecule contacted in a three-terminal configuration. Nano Lett. 7, 3336–3342 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  7. de Leon, N. P., Liang, W., Gu, Q. & Park, H. Vibrational excitation in single-molecule transistors: deviation from the simple Franck−Condon prediction. Nano Lett. 8, 2963–2967 (2008).

    Article  ADS  Google Scholar 

  8. Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999).

    Article  ADS  Google Scholar 

  9. Strachan, D. et al. Controlled fabrication of nanogaps in ambient environment for molecular electronics. Appl. Phys. Lett. 86, 043109 (2005).

    Article  ADS  Google Scholar 

  10. Umeno, A. & Hirakawa, K. Nonthermal origin of electromigration at gold nanojunctions in the ballistic regime. Appl. Phys. Lett. 94, 162103 (2009).

    Article  ADS  Google Scholar 

  11. Shibata, K., Umeno, A., Cha, K. M. & Hirakawa, K. Photon-assisted tunneling through self-assembled InAs quantum dots in the terahertz frequency range. Phys. Rev. Lett. 109, 077401 (2012).

    Article  ADS  Google Scholar 

  12. Zhang, Y. et al. Terahertz intersublevel transitions in single self-assembled InAs quantum dots with variable electron numbers. Nano Lett. 15, 1166–1170 (2015).

    Article  ADS  Google Scholar 

  13. Yoshida, K., Shibata, K. & Hirakawa, K. Terahertz field enhancement and photon-assisted tunneling in single-molecule transistors. Phys. Rev. Lett. 115, 138302 (2015).

    Article  ADS  Google Scholar 

  14. Seo, M. A. et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nat. Photon. 3, 152–156 (2009).

    Article  ADS  Google Scholar 

  15. Ward, D. R., Huser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotech. 5, 732–736 (2010).

    Article  ADS  Google Scholar 

  16. Kersting, R., Unterrainer, K., Strasser, G., Kauffmann, H. F. & Gornik, E. Few-cycle THz emission from cold plasma oscillations. Phys. Rev. Lett. 79, 3038–3041 (1997).

    Article  ADS  Google Scholar 

  17. Shimada, Y., Hirakawa, K., Odnoblioudov, M. & Chao, K. A. Terahertz conductivity and possible Bloch gain in semiconductor superlattices. Phys. Rev. Lett. 90, 046806 (2003).

    Article  ADS  Google Scholar 

  18. Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).

    Article  ADS  Google Scholar 

  19. Yoshioka, K. et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields. Nat. Photon. 10, 762–765 (2016).

    Article  ADS  Google Scholar 

  20. Heid, R., Pintschovius, L. & Godard, J. M. Eigenvectors of internal vibrations of C60: theory and experiment. Phys. Rev. B 56, 5925–5936 (1997).

    Article  ADS  Google Scholar 

  21. Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).

    Article  ADS  Google Scholar 

  22. Beenakker, C. W. J. Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646–1656 (1991).

    Article  ADS  Google Scholar 

  23. Leturcq, R. et al. Franck–Condon blockade in suspended carbon nanotube quantum dots. Nat. Phys. 5, 327–331 (2009).

    Article  Google Scholar 

  24. Burzurí, E. et al. Franck–Condon blockade in a single-molecule transistor. Nano Lett. 14, 3191–3196 (2014).

    Article  ADS  Google Scholar 

  25. Koch, J. & von Oppen, F. Franck–Condon blockade and giant Fano factors in transport through single molecules. Phys. Rev. Lett. 94, 206804 (2005).

    Article  ADS  Google Scholar 

  26. Hamada, I. van der Waals density functional made accurate. Phys. Rev. B 89, 121103 (2014).

    Article  ADS  Google Scholar 

  27. Hamada, I., Araidai, M. & Tsukada, M. Origin of nanomechanical motion in a single-C60 transistor. Phys. Rev. B 85, 121401 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Y. Arakawa for discussions on single-molecule spectroscopy and S. Ishida for his technical help in the fabrication process. This work is supported by KAKENHI (Grant-in-Aid for Scientific Research) on Innovative Areas ‘Science of hybrid quantum systems’ (15H05868) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), KAKENHI from Japan Society for the Promotion of Science (JSPS) (16H06709 and 17H01038), the Project for Developing Innovation Systems of MEXT, and the Canon Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.Q.D. fabricated the single-molecule transistor samples and carried out the THz measurements. K.H. conceived and supervised the project. K.Y. supported the transport measurements and Y.Z. provided assistance with the THz spectroscopy. I.H. carried out the DFT calculations. S.Q.D., I.H. and K.H. wrote the manuscript with contributions from all authors. All authors contributed to discussions.

Corresponding authors

Correspondence to Shaoqing Du or Kazuhiko Hirakawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Yoshida, K., Zhang, Y. et al. Terahertz dynamics of electron–vibron coupling in single molecules with tunable electrostatic potential. Nature Photon 12, 608–612 (2018). https://doi.org/10.1038/s41566-018-0241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0241-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing