Article | Published:

Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments

Nature Photonicsvolume 12pages554559 (2018) | Download Citation

Abstract

Polarization control of broadband terahertz waves is essential for applications in many areas, such as materials science, medical and biological diagnostics, near-field communications and public securities. Conventional methods for polarization control are limited to narrow bandwidth and often with low efficiency. Here, based on theoretical and experimental studies, we demonstrate that the two-colour laser scheme in gas plasma can provide effective control of elliptically polarized terahertz waves, including their ellipticity, azimuthal angle and chirality. This is achieved with a circularly polarized laser at the fundamental frequency and its linearly polarized second harmonic, a controlled phase difference between these two laser components, as well as a suitable length of the laser plasma filament. Flexible control of ellipticity and azimuthal angle is demonstrated with our theoretical model and systematic experiments. This offers a unique and flexible technique on the polarization control of broadband terahertz radiation suitable for a wide range of applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Yang, Y. et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photon. 11, 390–395 (2017).

  2. 2.

    Sato, M. et al. Terahertz polarization pulse shaping with arbitrary field control. Nat. Photon. 7, 724–731 (2013).

  3. 3.

    Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).

  4. 4.

    Zhu, J. et al. Ultra-broadband terahertz metamaterial absorber. Appl. Phys. Lett. 105, 021102 (2014).

  5. 5.

    Wang, B. X. et al. A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber. Appl. Phys. A 115, 1187–1192 (2014).

  6. 6.

    Zang, X. et al. Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings. Sci. Rep. 5, 8901 (2015).

  7. 7.

    Singh, R. et al. Terahertz metamaterial with asymmetric transmission. Phys. Rev. B 80, 153104 (2009).

  8. 8.

    Baierl, S. et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nat. Photon. 10, 715–718 (2016).

  9. 9.

    Katletz, S. et al. Polarization sensitive terahertz imaging: detection of birefringence and optical axis. Opt. Express 20, 23025–23035 (2012).

  10. 10.

    Hoshina, H. et al. Polarization and temperature dependent spectra of poly(3-hydroxyalkanoate)s measured at terahertz frequencies. Phys. Chem. Chem. Phys. 13, 9173–9179 (2011).

  11. 11.

    Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).

  12. 12.

    Amer, N., Hurlbut, W. C., Norton, B. J., Lee, Y. S. & Norris, T. B. Generation of terahertz pulses with arbitrary elliptical polarization. Appl. Phys. Lett. 87, 221111 (2005).

  13. 13.

    Houard, A., Liu, Y., Prade, B., Tikhonchuk, V. T. & Mysyrowicz, A. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Phys. Rev. Lett. 100, 255006 (2008).

  14. 14.

    Chen, Y. et al. Characterization of terahertz emission from a dc-biased filament in air. Appl. Phys. Lett. 95, 101101 (2009).

  15. 15.

    Lu, X. & Zhang, X. C. Generation of elliptically polarized terahertz waves from laser-induced plasma with double helix electrodes. Phys. Rev. Lett. 108, 123903 (2012).

  16. 16.

    Dai, J., Karpowicz, N. & Zhang, X. C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys. Rev. Lett. 103, 023001 (2009).

  17. 17.

    Wen, H. & Lindenberg, A. M. Coherent terahertz polarization control through manipulation of electron trajectories. Phys. Rev. Lett. 103, 023902 (2009).

  18. 18.

    You, Y. S., Oh, T. I. & Kim, K. Y. Mechanism of elliptically polarized terahertz generation in two-color laser filamentation. Opt. Lett. 38, 1034–1036 (2013).

  19. 19.

    Manceau, J. M., Massaouti, M. & Tzortzakis, S. Coherent control of THz pulses polarization from femtosecond laser filaments in gases. Opt. Express 18, 18894–18899 (2010).

  20. 20.

    Wang, H. et al. Generation of largely elliptically polarized terahertz radiation from laser-induced plasma. Opt. Express 25, 30987–30995 (2017).

  21. 21.

    Meng, C. et al. Enhancement of terahertz radiation by using circularly polarized two-color laser fields. Appl. Phys. Lett. 109, 131105 (2016).

  22. 22.

    Zhang, L. et al. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios. Phys. Rev. Lett. 119, 235001 (2017).

  23. 23.

    Wu, Q. & Zhang, X. C. Free-space electro-optics sampling of mid-infrared pulses. Appl. Phys. Lett. 71, 1285–1286 (1997).

  24. 24.

    Planken, P. C. M., Nienhuys, H. K., Bakker, H. J. & Wenckebach, T. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. J. Opt. Soc. Am. B 18, 313–317 (2001).

  25. 25.

    D’Amico, C. et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Phys. Rev. Lett. 98, 235002 (2007).

  26. 26.

    You, S. Y., Oh, T. I. & Kim, K. Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments. Phys. Rev. Lett. 109, 183902 (2012).

  27. 27.

    Kim, K. Y., Glownia, J. H., Taylor, A. J. & Rodriguez, G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express 15, 4577–4584 (2007).

  28. 28.

    Chen, M., Pukhov, A., Peng, X. Y. & Willi, O. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases. Phys. Rev. E 78, 046406 (2008).

  29. 29.

    Zhang, Z. et al. Controllable terahertz radiation from a linear-dipole array formed by a two-color laser filament in air. Phys. Rev. Lett. 117, 243901 (2016).

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (grant no. 2014CB339801), the National Natural Science Foundation of China (grants nos. 11474202, 11655002, 11774228 and 11721091) and the Science and Technology Commission of Shanghai Municipality (grant no. 16DZ2260200). Z.S. acknowledges the support of a Leverhulme Trust Research Grant at the University of Strathclyde.

Author information

Affiliations

  1. Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China

    • Zhelin Zhang
    • , Yanping Chen
    • , Sen Cui
    • , Feng He
    • , Min Chen
    • , Zhen Zhang
    • , Jin Yu
    • , Liming Chen
    • , Zhengming Sheng
    •  & Jie Zhang
  2. Collaborative Innovation Centre of IFSA, Shanghai Jiao Tong University, Shanghai, China

    • Zhelin Zhang
    • , Yanping Chen
    • , Sen Cui
    • , Feng He
    • , Min Chen
    • , Zhen Zhang
    • , Liming Chen
    • , Zhengming Sheng
    •  & Jie Zhang
  3. Department of Physics, SUPA, University of Strathclyde, Glasgow, UK

    • Zhengming Sheng
  4. Tsung-Dao Lee Institute, Shanghai, China

    • Zhengming Sheng
  5. Cockcroft Institute, Sci-Tech Daresbury, Warrington, UK

    • Zhengming Sheng

Authors

  1. Search for Zhelin Zhang in:

  2. Search for Yanping Chen in:

  3. Search for Sen Cui in:

  4. Search for Feng He in:

  5. Search for Min Chen in:

  6. Search for Zhen Zhang in:

  7. Search for Jin Yu in:

  8. Search for Liming Chen in:

  9. Search for Zhengming Sheng in:

  10. Search for Jie Zhang in:

Contributions

Z.L.Z., Y.C. and Z.S. conceived the study and wrote the main manuscript. Z.L.Z. and Y.C. carried out the experiments and analysed the data. Z.L.Z., Y.C., S.C. and F.H. developed the theoretical model. F.H. and M.C. provided theoretical support. Z.Z., J.Y., L.C. and J.Z. provided experimental support. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Yanping Chen or Zhengming Sheng.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41566-018-0238-9