Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments

Abstract

Polarization control of broadband terahertz waves is essential for applications in many areas, such as materials science, medical and biological diagnostics, near-field communications and public securities. Conventional methods for polarization control are limited to narrow bandwidth and often with low efficiency. Here, based on theoretical and experimental studies, we demonstrate that the two-colour laser scheme in gas plasma can provide effective control of elliptically polarized terahertz waves, including their ellipticity, azimuthal angle and chirality. This is achieved with a circularly polarized laser at the fundamental frequency and its linearly polarized second harmonic, a controlled phase difference between these two laser components, as well as a suitable length of the laser plasma filament. Flexible control of ellipticity and azimuthal angle is demonstrated with our theoretical model and systematic experiments. This offers a unique and flexible technique on the polarization control of broadband terahertz radiation suitable for a wide range of applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental demonstration of terahertz generation with arbitrary polarizations.
Fig. 2: Diagrams interpreting polarization of far-field terahertz radiation from a filament.
Fig. 3: Conservation variables related to terahertz polarization.
Fig. 4: Manipulation of DPV for terahertz waves by changing polarization of the FW laser.
Fig. 5: Control of terahertz polarization with arbitrary azimuthal angle and ellipticity.

Similar content being viewed by others

References

  1. Yang, Y. et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat. Photon. 11, 390–395 (2017).

    Article  ADS  Google Scholar 

  2. Sato, M. et al. Terahertz polarization pulse shaping with arbitrary field control. Nat. Photon. 7, 724–731 (2013).

    Article  ADS  Google Scholar 

  3. Cocker, T. L. et al. An ultrafast terahertz scanning tunnelling microscope. Nat. Photon. 7, 620–625 (2013).

    Article  ADS  Google Scholar 

  4. Zhu, J. et al. Ultra-broadband terahertz metamaterial absorber. Appl. Phys. Lett. 105, 021102 (2014).

    Article  ADS  Google Scholar 

  5. Wang, B. X. et al. A simple design of ultra-broadband and polarization insensitive terahertz metamaterial absorber. Appl. Phys. A 115, 1187–1192 (2014).

    Article  ADS  Google Scholar 

  6. Zang, X. et al. Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings. Sci. Rep. 5, 8901 (2015).

    Article  Google Scholar 

  7. Singh, R. et al. Terahertz metamaterial with asymmetric transmission. Phys. Rev. B 80, 153104 (2009).

    Article  ADS  Google Scholar 

  8. Baierl, S. et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nat. Photon. 10, 715–718 (2016).

    Article  ADS  Google Scholar 

  9. Katletz, S. et al. Polarization sensitive terahertz imaging: detection of birefringence and optical axis. Opt. Express 20, 23025–23035 (2012).

    Article  ADS  Google Scholar 

  10. Hoshina, H. et al. Polarization and temperature dependent spectra of poly(3-hydroxyalkanoate)s measured at terahertz frequencies. Phys. Chem. Chem. Phys. 13, 9173–9179 (2011).

    Article  Google Scholar 

  11. Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  12. Amer, N., Hurlbut, W. C., Norton, B. J., Lee, Y. S. & Norris, T. B. Generation of terahertz pulses with arbitrary elliptical polarization. Appl. Phys. Lett. 87, 221111 (2005).

    Article  ADS  Google Scholar 

  13. Houard, A., Liu, Y., Prade, B., Tikhonchuk, V. T. & Mysyrowicz, A. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Phys. Rev. Lett. 100, 255006 (2008).

    Article  ADS  Google Scholar 

  14. Chen, Y. et al. Characterization of terahertz emission from a dc-biased filament in air. Appl. Phys. Lett. 95, 101101 (2009).

    Article  ADS  Google Scholar 

  15. Lu, X. & Zhang, X. C. Generation of elliptically polarized terahertz waves from laser-induced plasma with double helix electrodes. Phys. Rev. Lett. 108, 123903 (2012).

    Article  ADS  Google Scholar 

  16. Dai, J., Karpowicz, N. & Zhang, X. C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Phys. Rev. Lett. 103, 023001 (2009).

    Article  ADS  Google Scholar 

  17. Wen, H. & Lindenberg, A. M. Coherent terahertz polarization control through manipulation of electron trajectories. Phys. Rev. Lett. 103, 023902 (2009).

    Article  ADS  Google Scholar 

  18. You, Y. S., Oh, T. I. & Kim, K. Y. Mechanism of elliptically polarized terahertz generation in two-color laser filamentation. Opt. Lett. 38, 1034–1036 (2013).

    Article  ADS  Google Scholar 

  19. Manceau, J. M., Massaouti, M. & Tzortzakis, S. Coherent control of THz pulses polarization from femtosecond laser filaments in gases. Opt. Express 18, 18894–18899 (2010).

    Article  ADS  Google Scholar 

  20. Wang, H. et al. Generation of largely elliptically polarized terahertz radiation from laser-induced plasma. Opt. Express 25, 30987–30995 (2017).

    Article  ADS  Google Scholar 

  21. Meng, C. et al. Enhancement of terahertz radiation by using circularly polarized two-color laser fields. Appl. Phys. Lett. 109, 131105 (2016).

    Article  ADS  Google Scholar 

  22. Zhang, L. et al. Observation of terahertz radiation via the two-color laser scheme with uncommon frequency ratios. Phys. Rev. Lett. 119, 235001 (2017).

    Article  ADS  Google Scholar 

  23. Wu, Q. & Zhang, X. C. Free-space electro-optics sampling of mid-infrared pulses. Appl. Phys. Lett. 71, 1285–1286 (1997).

    Article  ADS  Google Scholar 

  24. Planken, P. C. M., Nienhuys, H. K., Bakker, H. J. & Wenckebach, T. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. J. Opt. Soc. Am. B 18, 313–317 (2001).

    Article  ADS  Google Scholar 

  25. D’Amico, C. et al. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Phys. Rev. Lett. 98, 235002 (2007).

    Article  ADS  Google Scholar 

  26. You, S. Y., Oh, T. I. & Kim, K. Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments. Phys. Rev. Lett. 109, 183902 (2012).

    Article  ADS  Google Scholar 

  27. Kim, K. Y., Glownia, J. H., Taylor, A. J. & Rodriguez, G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express 15, 4577–4584 (2007).

    Article  ADS  Google Scholar 

  28. Chen, M., Pukhov, A., Peng, X. Y. & Willi, O. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases. Phys. Rev. E 78, 046406 (2008).

    Article  ADS  Google Scholar 

  29. Zhang, Z. et al. Controllable terahertz radiation from a linear-dipole array formed by a two-color laser filament in air. Phys. Rev. Lett. 117, 243901 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (grant no. 2014CB339801), the National Natural Science Foundation of China (grants nos. 11474202, 11655002, 11774228 and 11721091) and the Science and Technology Commission of Shanghai Municipality (grant no. 16DZ2260200). Z.S. acknowledges the support of a Leverhulme Trust Research Grant at the University of Strathclyde.

Author information

Authors and Affiliations

Authors

Contributions

Z.L.Z., Y.C. and Z.S. conceived the study and wrote the main manuscript. Z.L.Z. and Y.C. carried out the experiments and analysed the data. Z.L.Z., Y.C., S.C. and F.H. developed the theoretical model. F.H. and M.C. provided theoretical support. Z.Z., J.Y., L.C. and J.Z. provided experimental support. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yanping Chen or Zhengming Sheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Chen, Y., Cui, S. et al. Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments. Nature Photon 12, 554–559 (2018). https://doi.org/10.1038/s41566-018-0238-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0238-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing