Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Segmented terahertz electron accelerator and manipulator (STEAM)

This article has been updated

Abstract

Acceleration and manipulation of electron bunches underlie most electron and X-ray devices used for ultrafast imaging and spectroscopy. New terahertz-driven concepts offer orders-of-magnitude improvements in field strengths, field gradients, laser synchronization and compactness relative to conventional radiofrequency devices, enabling shorter electron bunches and higher resolution with less infrastructure while maintaining high charge capacities (pC), repetition rates (kHz) and stability. We present a segmented terahertz electron accelerator and manipulator (STEAM) capable of performing multiple high-field operations on the six-dimensional phase space of ultrashort electron bunches. With this single device, powered by few-microjoule, single-cycle, 0.3 THz pulses, we demonstrate record terahertz acceleration of >30 keV, streaking with <10 fs resolution, focusing with >2 kT m–1 strength, compression to ~100 fs as well as real-time switching between these modes of operation. The STEAM device demonstrates the feasibility of terahertz-based electron accelerators, manipulators and diagnostic tools, enabling science beyond current resolution frontiers with transformative impact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup.
Fig. 2: Concept and implementation.
Fig. 3: Terahertz acceleration.
Fig. 4: Terahertz-driven electron pulse compression.
Fig. 5: Terahertz lens for electron pulse focusing and defocusing.
Fig. 6: Terahertz streak camera.

Similar content being viewed by others

Change history

  • 24 April 2018

    In the pdf version of this Article originally published, ref. 32, although correctly cited, was missing from the main reference list and instead listed in error at the end of the Methods section. This has now been corrected.

References

  1. European X-Ray Free-Electron Laser Facility; https://www.xfel.eu/index_eng.html

  2. Gao, M. et al. Full characterization of RF compressed femtosecond electron pulses using ponderomotive scattering. Opt. Express 20, 12048–12058 (2012).

    Article  ADS  Google Scholar 

  3. Maxson, J. et al. Direct measurement of sub-10 fs relativistic electron beams with ultralow emittance. Phys. Rev. Lett. 118, 154802 (2017).

    Article  ADS  Google Scholar 

  4. Floettmann, K. & Paramonov, V. V. Beam dynamics in transverse deflecting rf structures. Phys. Rev. Accel. Beams 17, 024001 (2014).

    Article  ADS  Google Scholar 

  5. Ischebeck, R., Prat, E., Thominet, V. & Loch, C. O. Transverse profile imager for ultrabright electron beams. Phys. Rev. Accel. Beams 18, 082802 (2015).

    Article  ADS  Google Scholar 

  6. Manz, S. et al. Mapping atomic motions with ultrabright electrons: towards fundamental limits in space-time resolution. Faraday Discuss. 177, 467–491 (2015).

    Article  ADS  Google Scholar 

  7. Yang, H. et al. 10-fs-level synchronization of photocathode laser with RF-oscillator for ultrafast electron and X-ray sources. Sci. Rep. 7, 39966 (2017).

    Article  ADS  Google Scholar 

  8. Peralta, E. A. et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91–94 (2013).

    Article  ADS  Google Scholar 

  9. Breuer, J. & Hommelhoff, P. Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett. 111, 134803 (2013).

    Article  ADS  Google Scholar 

  10. Malka, V. et al. Principles and applications of compact laser–plasma accelerators. Nat. Phys. 4, 447–453 (2008).

    Article  Google Scholar 

  11. Leemans, W. & Esarey, E. Laser-driven plasma-wave electron accelerators. Phys. Today 62, 44–49 (2009).

    Article  Google Scholar 

  12. Guénot, D. et al. Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photon. 11, 293–296 (2017).

    Article  ADS  Google Scholar 

  13. Salehi, F. et al. MeV electron acceleration at 1 kHz with <10 mJ laser pulses. Opt. Lett. 42, 215–218 (2017).

    Article  ADS  Google Scholar 

  14. He, Z.-H. et al. High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp. New J. Phys. 15, 053016 (2013).

    Article  ADS  Google Scholar 

  15. Nanni, E. A. et al. Terahertz-driven linear electron acceleration. Nat. Commun. 6, 8486 (2015).

    Article  Google Scholar 

  16. Walsh, D. A. et al. Demonstration of sub-luminal propagation of single-cycle terahertz pulses for particle acceleration. Nat. Commun. 8, 421 (2017).

    Article  ADS  Google Scholar 

  17. Curry, E., Fabbri, S., Maxson, J., Musumeci, P. & Gover, A. Relativistic electron beam acceleration in a zero-slippage terahertz-driven inverse free electron laser scheme. Preprint at https://arxiv.org/abs/1708.06385 (2017).

  18. Hebling, J., Almasi, G., Kozma, I. Z. & Kuhl, J. Velocity matching by pulse front tilting for large area THz-pulse generation. Opt. Express 10, 1161–1166 (2002).

    Article  ADS  Google Scholar 

  19. Huang, S.-W. et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Opt. Lett. 38, 796–798 (2013).

    Article  ADS  Google Scholar 

  20. Fülöp, J. A. et al. Efficient generation of THz pulses with 0.4 mJ energy. Opt. Express 22, 20155–20163 (2014).

    Article  ADS  Google Scholar 

  21. Wimmer, L. et al. Terahertz control of nanotip photoemission. Nat. Phys. 10, 432–436 (2014).

    Article  Google Scholar 

  22. Li, S. & Jones, R. R. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses. Nat. Commun. 7, 13405 (2016).

    Article  ADS  Google Scholar 

  23. Huang, R. W. et al. Toward a terahertz-driven electron gun. Sci. Rep. 5, 14899 (2015).

    Article  ADS  Google Scholar 

  24. Fallahi, A., Fakhari, M., Yahaghi, A., Arrieta, M. & Kärtner, F. X. Short electron bunch generation using single-cycle ultrafast electron guns. Phys. Rev. Accel. Beams 19, 081302 (2016).

    Article  ADS  Google Scholar 

  25. Hebling, J. et al. Optical manipulation of relativistic electron beams using THz pulses. Preprint at http://arxiv.org/abs/1109.6852 (2011).

  26. Huang, W. R. et al. Terahertz-driven, all-optical electron gun. Optica 3, 1209–1212 (2016).

    Article  Google Scholar 

  27. Fakhari, M., Fallahi, A. & Kärtner, F. X. THz cavities and injectors for compact electron acceleration using laser-driven THz sources. Phys. Rev. Accel. Beams 20, 041302 (2017).

    Article  ADS  Google Scholar 

  28. Fabiańska, J., Kassier, G. & Feurer, T. Split ring resonator based THz-driven electron streak camera featuring femtosecond resolution. Sci. Rep. 4, 5645 (2014).

    Article  Google Scholar 

  29. Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Döbert, S. et al. High gradient performance of NLC/GLC X-band accelerating structures. In Proc. Particle Accelerator Conference 372–374 (IEEE, 2005).

  31. Massimo, D. F. et al. Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures. Phys. Rev. Accel. Beams 19, 051302 (2016).

    Article  Google Scholar 

  32. Wu, X. et al. High-gradient breakdown studies of an X-band compact linear collider prototype structure. Phys. Rev. Accel. Beams 20, 052001 (2017).

    Article  ADS  Google Scholar 

  33. Kilpatrick, W. Criterion for vacuum sparking designed to include both rf and dc. Rev. Sci. Instrum. 28, 824–826 (1957).

    Article  ADS  Google Scholar 

  34. Fallahi, A. & Kärtner, F. X. Field-based DGTD/PIC technique for general and stable simulation of interaction between light and electron bunches. J. Phys. B47, 234015 (2014).

    ADS  Google Scholar 

  35. van Oudheusden, T., de Jong, E. F., van der Ceer, S. B., Op’t Root, W. P. E. M. & Juiten, O. J. Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. J. Appl. Phys. 102, 093501 (2007).

    Article  ADS  Google Scholar 

  36. Panofsky, W. K. H. & Wenzel, W. A. Some considerations concerning the transverse deflection of charged particles in radio-frequency fields. Rev. Sci. Instrum. 27, 967 (1956).

    Article  ADS  Google Scholar 

  37. Cesar, D. et al. Demonstration of single-shot picosecond time-resolved MeV electron imaging using a compact permanent magnet quadrupole based lens. Phys. Rev. Lett. 117, 024801 (2016).

    Article  ADS  Google Scholar 

  38. Wootton, K. P. et al. Dielectric laser acceleration and focusing using short-pulse lasers with an arbitrary laser phase distribution. AIP Conf. Proc. 1812, 060001 (2017).

    Article  Google Scholar 

  39. van Tilborg, J. et al. Active plasma lensing for relativistic laser-plasma-accelerated electron beams. Phys. Rev. Lett. 115, 184802 (2015).

    Article  ADS  Google Scholar 

  40. Gliserin, A., Walbran, M., Krausz, F. & Baum, P. Sub-phonon-period compression of electron pulses for atomic diffraction. Nat. Commun. 6, 8723 (2015).

    Article  ADS  Google Scholar 

  41. Sciaini, G. & Miller, R. J. D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Rep. Prog. Phys. 74, 096101 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge helpful discussions with C. Zhou, W. R. Huang, F. Ahr and W. Qiao, the expert technical support of T. Tilp, and M. Schust for fabrication of the STEAM devices used in this work. Besides Deutsches Elektronen Synchrotron (DESY) and the Helmholtz Association, this work was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the Synergy Grant ‘Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy’ (AXSIS) (609920) and the excellence cluster ‘The Hamburg Center for Ultrafast Imaging – Structure, Dynamics and Control of Matter at the Atomic Scale’ (CUI, DFG-EXC1074), the priority programme ‘Quantum Dynamics in Tailored Intense Fields’ (QUTIF) (SPP1840 SOLSTICE) of the Deutsche Forschungsgemeinschaft and the accelerator on a chip programme (ACHIP) funded by the Gordon and Betty Moore Foundation (GBMF4744). The authors also thank T. Y. Fan and J. Zayhowski from MIT Lincoln Laboratory for initial work on the cryogenic Yb:YLF laser within the AXIS Program funded by the Defense Advanced Research Projects Agency (DARPA) and DARPA for the loan of the laser. X.W. acknowledges support through a Georg Forster Research Fellowship of the Alexander von Humboldt Foundation and A.-L.C through a Helmholtz Postdoctoral Fellowship from the Helmholtz Association.

Author information

Authors and Affiliations

Authors

Contributions

F.X.K., D.Z., A.F. and N.H.M. conceived and coordinated the terahertz-driven electron acceleration and manipulation project. The structure was designed by A.F. and M.F. D.Z. designed the experimental setup and carried out the experiments. M.H., L.E.Z. and Y.H. built the Yb:YLF laser. A.-L.C. built the Yb:KYW laser with the help of H.C. X.W. and D.Z. built the terahertz setup. D.Z. built the ultraviolet generation and automated the setup. A.F. performed all simulations. A.-L.C., H.C., M.H., Y.H. and L.E.Z. maintained the laser systems and contributed with helpful discussions on the experiment. D.Z., A.F., N.H.M. and F.X.K. wrote the manuscript with revisions by all.

Corresponding author

Correspondence to Dongfang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Supplementary Video 1

THz field development as a function of time inside the STEAM device.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Fallahi, A., Hemmer, M. et al. Segmented terahertz electron accelerator and manipulator (STEAM). Nature Photon 12, 336–342 (2018). https://doi.org/10.1038/s41566-018-0138-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0138-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing