Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Decoherence-protected memory for a single-photon qubit

Abstract

Distributed quantum computation in a quantum network1,2,3 is based on the idea that qubits can be preserved and efficiently exchanged between long-lived, stationary network nodes via photonic links4. Although long qubit lifetimes have been observed5,6,7,8,9,10, and non-qubit excitations have been memorized11,12,13,14, the long-lived storage and efficient retrieval of a photonic qubit by means of a light–matter interface15,16,17,18,19,20 remains an outstanding challenge. Here, we report on a qubit memory based on a single atom coupled to a high-finesse optical resonator. By mapping the qubit between an interface basis with strong light–matter coupling and a memory basis with low decoherence, we achieve a coherence time exceeding 100 ms with a time-independent storage-and-retrieval efficiency of 22%. The former constitutes an improvement by two orders of magnitude21,22 and thus implements an efficient photonic qubit memory with a coherence time that exceeds the lower bound needed for direct qubit teleportation in a global quantum internet.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three different experimental protocols are employed for photonic qubit storage.
Fig. 2: Experimental set-up and level schemes for the single-atom quantum memory.
Fig. 3: Results for a memory experiment with mapping and remapping to and from the memory basis, respectively.
Fig. 4: Results for a memory experiment with the application of a spin-echo technique.

Similar content being viewed by others

References

  1. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  2. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  3. Razavi, M., Piani, M. & Lütkenhaus, N. Quantum repeaters with imperfect memories: Cost and scalability. Phys. Rev. A 80, 032301 (2009).

    Article  ADS  MATH  Google Scholar 

  4. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article  MATH  Google Scholar 

  5. Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005).

    Article  ADS  Google Scholar 

  6. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article  ADS  Google Scholar 

  7. Steger, M. et al. Quantum information storage for over 180 s using donor spins in a 28Si “semiconductor vacuum”. Science 336, 1280–1283 (2012).

    Article  ADS  Google Scholar 

  8. Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013).

    Article  ADS  Google Scholar 

  9. Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article  ADS  Google Scholar 

  10. Yang, J. et al. Coherence preservation of a single neutral atom qubit transferred between magic-intensity optical traps. Phys. Rev. Lett. 117, 123201 (2016).

    Article  ADS  Google Scholar 

  11. Zhao, B. et al. A millisecond quantum memory for scalable quantum networks. Nat. Phys. 5, 95–99 (2009).

    Article  Google Scholar 

  12. Radnaev, A. G. et al. A quantum memory with telecom-wavelength conversion. Nat. Phys. 6, 894–899 (2010).

    Article  Google Scholar 

  13. Bao, X.-H. et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys. 8, 517–521 (2012).

    Article  Google Scholar 

  14. Yang, S.-J., Wang, X.-J., Bao, X.-H. & Pan, J.-W. An efficient quantum light–matter interface with sub-second lifetime. Nat. Photon. 10, 381–384 (2016).

    Article  ADS  Google Scholar 

  15. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurášek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).

    Article  ADS  Google Scholar 

  16. Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008).

    Article  ADS  Google Scholar 

  17. Clausen, C., Bussières, F., Afzelius, M. & Gisin, N. Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials. Phys. Rev. Lett. 108, 190503 (2012).

    Article  ADS  Google Scholar 

  18. Sprague, M. R. et al. Broadband single-photon-level memory in a hollow-core photonic crystal fibre. Nat. Photon. 8, 287–291 (2014).

    Article  ADS  Google Scholar 

  19. Gouraud, B., Maxein, D., Nicolas, A., Morin, O. & Laurat, J. Demonstration of a memory for tightly guided light in an optical nanofiber. Phys. Rev. Lett. 114, 180503 (2015).

    Article  ADS  Google Scholar 

  20. Sayrin, C., Clausen, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms. Optica 2, 353–356 (2015).

    Article  Google Scholar 

  21. Riedl, S. et al. Bose-Einstein condensate as a quantum memory for a photonic polarisation qubit. Phys. Rev. A 85, 022318 (2012).

    Article  ADS  Google Scholar 

  22. Xu, Z. et al. Long lifetime and high-fidelity quantum memory of photonic polarisation qubit by lifting Zeeman degeneracy. Phys. Rev. Lett. 111, 240503 (2013).

    Article  ADS  Google Scholar 

  23. Munro, W. J. et al. Quantum communication without the necessity of quantum memories. Nat. Photon. 6, 777–781 (2012).

    Article  ADS  Google Scholar 

  24. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Treutlein, P., Hommelhoff, P., Steinmetz, T., Hänsch, T. W. & Reichel, J. Coherence in microchip traps. Phys. Rev. Lett. 92, 203005 (2004).

    Article  ADS  Google Scholar 

  26. Specht, H. P. et al. A single-atom quantum memory. Nature 473, 190–193 (2011).

    Article  ADS  Google Scholar 

  27. Ruster, T. et al. A long-lived Zeeman trapped-ion qubit. Appl. Phys. B 112, 254 (2016).

    Article  ADS  Google Scholar 

  28. Neuzner, A., Körber, M., Morin, O., Ritter, S. & Rempe, G. Interference and dynamics of light from a distance-controlled atom pair in an optical cavity. Nat. Photon. 10, 303–306 (2016).

    Article  ADS  Google Scholar 

  29. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97, 083602 (2006).

    Article  ADS  Google Scholar 

  30. Reiserer, A., Nölleke, C., Ritter, S. & Rempe, G. Ground-state cooling of a single atom at the center of an optical cavity. Phys. Rev. Lett. 110, 223003 (2013).

    Article  ADS  Google Scholar 

  31. Dilley, J., Nisbet-Jones, P., Shore, B. W. & Kuhn, A. Single-photon absorption in coupled atom-cavity systems. Phys. Rev. A 85, 023834 (2012).

    Article  ADS  Google Scholar 

  32. Uphoff, M., Brekenfeld, M., Rempe, G. & Ritter, S. An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities. Appl. Phys. B 122, 46 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Wang for the development of the hardware and S. Dürr, L. Li and M. Uphoff for discussion. This work was supported by the Bundesministerium für Bildung und Forschung via the Verbund Q.comand by the Deutsche Forschungsgemeinschaft via the excellence cluster Nanosystems Initiative Munich (NIM).

Author information

Authors and Affiliations

Authors

Contributions

M.K., O.M., A.N., S.R. and G.R. conceived the experiment. M.K., O.M. and S.L. performed the experiment. M.K., O.M., S.L., S.R. and G.R. evaluated the data. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to M. Körber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Körber, M., Morin, O., Langenfeld, S. et al. Decoherence-protected memory for a single-photon qubit. Nature Photon 12, 18–21 (2018). https://doi.org/10.1038/s41566-017-0050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0050-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing