Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diffraction-free space–time light sheets

Abstract

Diffraction-free optical beams propagate freely without change in shape and scale. Monochromatic beams that avoid diffractive spreading require two-dimensional transverse profiles and there are no corresponding solutions for profiles restricted to one transverse dimension. Here, we demonstrate that the temporal degree of freedom can be exploited to efficiently synthesize one-dimensional pulsed light sheets that propagate self-similarly in free space, with no need for nonlinearity or dispersion. By introducing programmable conical (hyperbolic, parabolic or elliptical) spectral correlations between the beam’s spatiotemporal degrees of freedom, a continuum of families of propagation-invariant light sheets is generated. The spectral loci of such beams are the reduced-dimensionality trajectories at the intersection of the light-cone with spatiotemporal spectral planes. Far from being exceptional, self-similar axial-propagation in free space is a generic feature of fields whose spatial and temporal degrees of freedom are tightly correlated. These ‘space–time’ light sheets can be useful in microscopy, nonlinear spectroscopy, and non-contact measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of a diffraction-free ST light sheet.
Fig. 2: Synthesis and analysis of diffraction-free ST light sheets.
Fig. 3: Spatiotemporal spectral control of ST light sheets.
Fig. 4: Propagation of diffraction-free ST light sheets.
Fig. 5: Diffraction-free ST hollow light sheet.
Fig. 6: Spatiotemporal analysis of diffraction-free ST light sheets.

Similar content being viewed by others

References

  1. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics (Wiley, Hoboken, 2007).

  2. Levy, U., Derevyanko, S. & Silberberg, Y. Light modes of free space. Prog. Opt. 61, 237–281 (2016).

    Article  Google Scholar 

  3. Durnin, J., Miceli, J. J. & Eberly, J. H. Diffraction-free beams. Phys. Rev. Lett. 58, 1499–1501 (1987).

    Article  ADS  Google Scholar 

  4. Bandres, M. A., Gutiérrez-Vega, J. C. & Chávez-Cerda, S. Parabolic nondiffracting optical wave fields. Opt. Lett. 29, 44–46 (2004).

    Article  ADS  Google Scholar 

  5. Rodríguez-Lara, B. M. Normalization of optical Weber waves and Weber-Gauss beams. J. Opt. Soc. Am. A 27, 327–332 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  6. Hernández-Figueroa, H. E., Recami, E. & Zamboni-Rached, M. Non-diffracting Waves (Wiley, Weinheim, 2014).

  7. Turunen, J. & Friberg, A. T. Propagation-invariant optical fields. Prog. Opt. 54, 1–88 (2010).

    Article  Google Scholar 

  8. Siviloglou, G. A. & Christodoulides, D. N. Accelerating finite energy Airy beams. Opt. Lett. 32, 979–981 (2007).

    Article  ADS  Google Scholar 

  9. Berry, M. V. & Balazs, N. L. Nonspreading wave packets. Am. J. Phys. 47, 264–267 (1979).

    Article  ADS  Google Scholar 

  10. Malomed, B. A., Mihalache, D., Wise, F. & Torner, L. Spatiotemporal optical solitons. J. Opt. B 7, R53–R72 (2005).

    Article  ADS  Google Scholar 

  11. DelRe, E. et al. Subwavelength anti-diffracting beams propagating over more than 1,000 Rayleigh lengths. Nat. Photon. 9, 228–232 (2015).

    ADS  Google Scholar 

  12. Porras, M. A. Diffraction-free and dispersion-free pulsed beam propagation in dispersive media. Opt. Lett. 26, 1364–1366 (2001).

    Article  ADS  Google Scholar 

  13. Mills, M. S. et al. Localized waves with spherical harmonic symmetries. Phys. Rev. A 86, 063811 (2012).

    Article  ADS  Google Scholar 

  14. Chong, A., Renninger, W. H., Christodoulides, D. N. & Wise, F. W. Airy–Bessel wave packets as versatile linear light bullets. Nat. Photon. 4, 103–106 (2010).

    Article  ADS  Google Scholar 

  15. Brittingham, J. N. Focus wave modes in homogeneous Maxwell’s equations: transverse electric mode. J. Appl. Phys. 54, 1179–1189 (1983).

    Article  ADS  Google Scholar 

  16. Lu, J.-Y. & Greenleaf, J. F. Nondiffracting X waves—exact solutions to free-space scalar wave equation and their finite aperture realizations. IEEE Trans. Ultrason. Ferroelec. Freq. Control 39, 19–31 (1992).

    Article  Google Scholar 

  17. Saari, P. & Reivelt, K. Evidence of X-shaped propagation-invariant localized light waves. Phys. Rev. Lett. 79, 4135–4138 (1997).

    Article  ADS  Google Scholar 

  18. Di Trapani, P. et al. Spontaneously generated X-shaped light bullets. Phys. Rev. Lett. 91, 093904 (2003).

    Article  ADS  Google Scholar 

  19. Sheppard, C. J. R. Generalized Bessel pulse beams. J. Opt. Soc. Am. A 19, 2218–2222 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  20. Mackinnon, L. A nondispersive de Broglie wave packet. Found. Phys. 8, 157–176 (1978).

    Article  ADS  Google Scholar 

  21. Dallaire, M., McCarthy, N. & Piché, M. Spatiotemporal Bessel beams: theory and experiments. Opt. Express 17, 18148–18164 (2009).

    Article  ADS  Google Scholar 

  22. Jedrkiewicz, O., Wang, Y.-D., Valiulis, G. & Di Trapani, P. One dimensional spatial localization of polychromatic stationary wave-packets in normally dispersive media. Opt. Express 21, 25000–25009 (2013).

    Article  ADS  Google Scholar 

  23. Christodoulides, D. N., Efremidis, N. K., Di Trapani, P. & Malomed, B. A. Bessel X waves in two- and three-dimensional bidispersive optical systems. Opt. Lett. 29, 1446–1448 (2004).

    Article  ADS  Google Scholar 

  24. Valtna, H., Reivelt, K. & Saari, P. Methods for generating wideband localized waves of superluminal group velocity. Opt. Commun. 278, 1–7 (2007).

    Article  ADS  Google Scholar 

  25. Kondakci, H. E. & Abouraddy, A. F. Diffraction-free pulsed optical beams via space–time correlations. Opt. Express 24, 28659–28668 (2016).

    Article  ADS  Google Scholar 

  26. Parker, K. J. & Alonso, M. A. The longitudinal iso-phase condition and needle pulses. Opt. Express 24, 28669–28677 (2016).

    Article  ADS  Google Scholar 

  27. Akturk, S., Gu, X., Gabolde, P. & Trebino, R. The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams. Opt. Express 13, 8642–8661 (2005).

    Article  ADS  Google Scholar 

  28. Tanab, T., Kannari, F., Korte, F., Koch, J. & Chichkov, B. Influence of spatiotemporal coupling induced by an ultrashort laser pulse shaper on a focused beam profile. Appl. Opt. 44, 1092–1098 (2005).

    Article  ADS  Google Scholar 

  29. Zhu, G., van Howe, J., Durst, M., Zipfel, W. & Xu, C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 13, 2153–2159 (2005).

    Article  ADS  Google Scholar 

  30. He, F. et al. Characterization and control of peak intensity distribution at the focus of a spatiotemporally focused femtosecond laser beam. Opt. Express 22, 9734–9748 (2014).

    Article  ADS  Google Scholar 

  31. Bélanger, P. A. Packetlike solutions of the homogeneous-wave equation. J. Opt. Soc. Am. A 1, 723–724 (1984).

    Article  ADS  Google Scholar 

  32. Saari, P. & Reivelt, K. Generation and classification of localized waves by Lorentz transformations in Fourier space. Phys. Rev. E 69, 036612 (2004).

    Article  ADS  Google Scholar 

  33. Longhi, S. Gaussian pulsed beams with arbitrary speed. Opt. Express 12, 935–940 (2004).

    Article  ADS  Google Scholar 

  34. Overfelt, P. L. & Kenney, C. S. Comparison of the propagation characteristics of Bessel, Bessel–Gauss, and Gaussian beams diffracted by a circular aperture. J. Opt. Soc. Am. A 8, 732–745 (1991).

    Article  ADS  Google Scholar 

  35. Maurer, C., Jesacher, A., Bernet, S. & Ritsch-Marte, M. What spatial light modulators can do for optical microscopy. Laser Photon. Rev. 5, 81–101 (2011).

    Article  Google Scholar 

  36. Forbes, A., Dudley, A. & McLaren, M. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photon. 8, 200–227 (2016).

    Article  Google Scholar 

  37. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    Article  ADS  Google Scholar 

  38. Weiner, A. M. Ultrafast Optics (Wiley, Weinheim, 2009).

  39. Koehl, R. M., Hattori, T. & Nelson, K. A. Automated spatial and temporal shaping of femtosecond pulses. Opt. Commun. 157, 57–61 (1998).

    Article  ADS  Google Scholar 

  40. Feurer, T., Vaughan, J. C., Koehl, R. M. & Nelson, K. A. Multidimensional control of femtosecond pulses by use of a programmable liquid-crystal matrix. Opt. Lett. 27, 652–654 (2002).

    Article  ADS  Google Scholar 

  41. Sussman, B. J., Lausten, R. & Stolow, A. Focusing of light following a 4-f pulse shaper: considerations for quantum control. Phys. Rev. A 77, 043416 (2008).

    Article  ADS  Google Scholar 

  42. Abouraddy, A. F., Yarnall, T., Saleh, B. E. A. & Teich, M. C. Violation of Bell’s inequality with continuous spatial variables. Phys. Rev. A 75, 052114 (2007).

    Article  ADS  Google Scholar 

  43. Fahrbach, F. O., Simon, P. & Rohrbach, A. Microscopy with self-reconstructing beams. Nat. Photon. 4, 780–785 (2010).

    Article  ADS  Google Scholar 

  44. Bahabad, A., Murnane, M. M. & Kapteyn, H. C. Quasi-phase-matching of momentum and energy in nonlinear optical processes. Nat. Photon. 4, 570–575 (2010).

    Article  ADS  Google Scholar 

  45. Polynkin, P., Kolesik, M., Moloney, J. V., Siviloglou, G. A. & Christodoulides, D. N. Curved plasma channel generation using ultra-Intense Airy beams. Science 324, 229–232 (2009).

    Article  ADS  Google Scholar 

  46. Kaminer, I., Nemirovsky, J., Rechtsman, M., Bekenstein, R. & Segev, M. Self-accelerating Dirac particles and prolonging the lifetime of relativistic fermions. Nat. Phys. 11, 261–267 (2015).

    Article  Google Scholar 

  47. Pariente, G., Gallet, V., Borot, A., Gobert, O. & Quéré, F. Space–time characterization of ultra-intense femtosecond laser beams. Nat. Photon. 10, 547–553 (2016).

    Article  ADS  Google Scholar 

  48. Qian, X.-F. & Eberly, J. H. Entanglement and classical polarization states. Opt. Lett. 36, 4110–4112 (2011).

    Article  ADS  Google Scholar 

  49. Kagalwala, K. H., Di Giuseppe, G., Abouraddy, A. F. & Saleh, B. E. A. Bell’s measure in classical optical coherence. Nat. Photon. 7, 72–78 (2013).

    Article  ADS  Google Scholar 

  50. Aiello, A., Töppel, F., Marquardt, C., Giacobino, E. & Leuchs, G. Quantum-like nonseparable structures in optical beams. New J. Phys. 17, 043024 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank D.N. Christodoulides, A. Keles and R. Menon for discussions. This work was supported by the US Office of Naval Research (ONR) under contract N00014-17-1-2458.

Author information

Authors and Affiliations

Authors

Contributions

H.E.K. and A.F.A developed the theoretical and experimental framework for this work. H.E.K. carried out the measurements. Both authors analysed the results and wrote the manuscript.

Corresponding author

Correspondence to Ayman F. Abouraddy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondakci, H.E., Abouraddy, A.F. Diffraction-free space–time light sheets. Nature Photon 11, 733–740 (2017). https://doi.org/10.1038/s41566-017-0028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0028-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing