Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly efficient on-chip direct electronic–plasmonic transducers

Abstract

Photonic elements can carry information with a capacity exceeding 1,000 times that of electronic components, but, due to the optical diffraction limit, these elements are large and difficult to integrate with modern-day nanoelectronics or upcoming packages, such as three-dimensional integrated circuits or stacked high-bandwidth memories1,2,3. Surface plasmon polaritons can be confined to subwavelength dimensions and can carry information at high speeds (>100 THz)4,5,6. To combine the small dimensions of nanoelectronics with the fast operating speed of optics via plasmonics, on-chip electronic–plasmonic transducers that directly convert electrical signals into plasmonic signals (and vice versa) are required. Here, we report electronic–plasmonic transducers based on metal–insulator–metal tunnel junctions coupled to plasmonic waveguides with high-efficiency on-chip generation, manipulation and readout of plasmons. These junctions can be readily integrated into existing technologies, and we thus believe that they are promising for applications in on-chip integrated plasmonic circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: On-chip electronic–plasmonic transducer.
Fig. 2: Plasmon excitation and detection by MIM-TJs.
Fig. 3: Plasmon excitation and detection by on-chip coupled MIM-TJs.

Similar content being viewed by others

References

  1. Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    Article  ADS  Google Scholar 

  2. Brongersma, M. L. & Shalaev, V. M. The case for plasmonics. Science 328, 440–441 (2010).

    Article  ADS  Google Scholar 

  3. Arakawa, Y., Nakamura, T., Urino, Y. & Fujita, T. Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 51, 72–77 (2013).

    Article  Google Scholar 

  4. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  5. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010).

    Article  ADS  Google Scholar 

  6. Tan, S. F. et al. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 343, 1496–1499 (2014).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Koller, D. M. et al. Organic plasmon-emitting diode. Nat. Photon. 2, 684–687 (2008).

    Article  ADS  Google Scholar 

  8. Neutens, P., Lagae, L., Borghs, G. & Dorpe, P. V. Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides. Nano Lett. 10, 1429–1432 (2010).

    Article  ADS  Google Scholar 

  9. Huang, K. C. Y. et al. Electrically driven subwavelength optical nanocircuits. Nat. Photon. 8, 244–249 (2014).

    Article  ADS  Google Scholar 

  10. Walters, R. J., van Loon, R. V. A., Brunets, I., Schmitz, J. & Polman, A. A silicon-based electrical source of surface plasmon polaritons. Nat. Mater. 9, 21–25 (2010).

    Article  ADS  Google Scholar 

  11. Rai, P. et al. Electrical excitation of surface plasmons by an individual carbon nanotube transistor. Phys. Rev. Lett. 111, 026804 (2013).

    Article  ADS  Google Scholar 

  12. Walter, G., Wu, C. H., Then, H. W., Feng, M. & Holonyak, Jr. N. 4.3 GHz optical bandwidth light emitting transistor. Appl. Phys. Lett. 94, 241101 (2009).

    Article  ADS  Google Scholar 

  13. Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    Article  ADS  Google Scholar 

  14. Falk, A. L. et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nat. Phys. 5, 475–479 (2009).

    Article  ADS  Google Scholar 

  15. Neutens, P., Van Dorpe, P., De Vlaminck, I., Lagae, L. & Borghs, G. Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nat. Photon. 3, 283–286 (2009).

    Article  ADS  Google Scholar 

  16. Heeres, R. W. et al. On-chip single plasmon detection. Nano Lett. 10, 661–664 (2010).

    Article  ADS  Google Scholar 

  17. Goodfellow, K. M., Chakraborty, C., Beams, R., Novotny, L. & Vamivakas, A. N. Direct on-chip optical plasmon detection with an atomically thin semiconductor. Nano Lett. 15, 5477–5481 (2015).

    Article  ADS  Google Scholar 

  18. Lambe, J. & McCarthy, S. L. Light emission from inelastic electron tunnelling. Phys. Rev. Lett. 37, 923 (1976).

    Article  ADS  Google Scholar 

  19. Kern, J. et al. Electrically driven optical antennas. Nat. Photon. 9, 582–586 (2015).

    Article  ADS  Google Scholar 

  20. Parzefall, M. et al. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions. Nat. Nanotech. 10, 1058–1063 (2015).

    Article  ADS  Google Scholar 

  21. Buret, M. et al. Spontaneous hot-electron light emission from electron-fed optical antennas. Nano Lett. 15, 5811–5818 (2015).

    Article  ADS  Google Scholar 

  22. Kirtley, J., Theis, T. N. & Tsang, J. C. Light emission from tunnel junctions on gratings. Phys. Rev. B 24, 5650 (1981).

    Article  ADS  Google Scholar 

  23. Dawson, P., Walmsley, D. G., Quinn, H. A. & Ferguson, A. J. L. Observation and explanation of light-emission spectra from statistically rough Cu, Ag, and Au tunnel junctions. Phys. Rev. B 30, 3164 (1984).

    Article  ADS  Google Scholar 

  24. Du, W. et al. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat. Photon. 10, 274–280 (2016).

    Article  ADS  Google Scholar 

  25. Ward, D. R., Hüser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotech. 5, 732–736 (2010).

    Article  ADS  Google Scholar 

  26. Arielly, R., Ofarim, A., Noy, G. & Selzer, Y. Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies. Nano Lett. 11, 2968–2972 (2011).

    Article  ADS  Google Scholar 

  27. Stolz, A. et al. Nonlinear photon-assisted tunneling transport in optical gap antennas. Nano Lett. 14, 2330–2338 (2014).

    Article  ADS  Google Scholar 

  28. Sharma, A., Singh, V., Bougher, T. L. & Cola, B. A. A carbon nanotube optical rectenna. Nat. Nanotech. 10, 1027–1032 (2015).

    Article  ADS  Google Scholar 

  29. Berndt, R., Gimzewski, J. K. & Johansson, P. Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces. Phys. Rev. Lett. 67, 3796 (1991).

    Article  ADS  Google Scholar 

  30. Bharadwaj, P., Bouhelier, A. & Novotny, L. Electrical excitation of surface plasmons. Phys. Rev. Lett. 106, 226802 (2011).

    Article  ADS  Google Scholar 

  31. Le Moal, E. et al. An electrically excited nanoscale light source with active angular control of the emitted light. Nano Lett. 13, 4198–4205 (2013).

    Article  ADS  Google Scholar 

  32. Davis, L. C. Theory of surface-plasmon excitation in metal–insulator–metal tunnel junctions. Phys. Rev. B 16, 2482 (1977).

    Article  ADS  Google Scholar 

  33. Bigourdan, F., Hugonin, J. P., Marquier, F., Sauvan, C. & Greffet, J. J. Nanoantenna for electrical generation of surface plasmon polaritons. Phys. Rev. Lett. 116, 106803 (2016).

    Article  ADS  Google Scholar 

  34. Taflove, A. & Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method 3rd edn (Artech House, Norwood, MA, 2005).

    MATH  Google Scholar 

  35. Palik, E. D. Handbook of Optical Constants of Solids (Academic Press, San Diego, CA, 1998).

    Google Scholar 

  36. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 437 (1972).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Research Foundation (NRF) for supporting this research under the Prime Minister’s Office, Singapore, under its Medium Sized Centre Programme and the Competitive Research Programme (CRP) (NRF-CRP17-2017-08). H.S.C. acknowledges the support of the A*STAR Computational Resource Centre through the use of its high-performance computing facilities. J. Martin is thanked for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.D. fabricated the samples. W.D. and T.W. performed the experiments and analysed the data. T.W. and H.S.C. performed theoretical calculations. C.A.N. conceived and designed the experiments. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Christian A. Nijhuis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Highly Efficient On-Chip Direct Electronic-Plasmonic Transducers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Wang, T., Chu, HS. et al. Highly efficient on-chip direct electronic–plasmonic transducers. Nature Photon 11, 623–627 (2017). https://doi.org/10.1038/s41566-017-0003-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0003-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing