Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection

Abstract

Superconducting nanowire single-photon detectors with peak efficiencies above 90% and unrivalled timing jitter (<30 ps) have emerged as a potent technology for quantum information and sensing applications. However, their high cost and cryogenic operation limit their widespread applicability. Here, we present an approach using tapered InP nanowire p–n junction arrays for high-efficiency, broadband and high-speed photodetection without the need for cryogenic cooling. The truncated conical nanowire shape enables a broadband, linear photoresponse in the ultraviolet to near-infrared range (~500 nm bandwidth) with external quantum efficiencies exceeding 85%. The devices exhibit a high gain beyond 105, such that a single photon per pulse can be distinguished from the dark noise, while simultaneously showing a fast pulse rise time (<1 ns) and excellent timing jitter (<20 ps). Such detectors open up new possibilities for applications in remote sensing, dose monitoring for cancer treatment, three-dimensional imaging and quantum communication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tapered nanowire array device design.
Fig. 2: Near-unity absorption.
Fig. 3: Photocurrent response and avalanche photodetection.
Fig. 4: Temporal response.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zhang, J., Itzler, M. A., Zbinden, H. & Pan, J.-W. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci. Appl. 4, e286 (2015).

    Article  CAS  Google Scholar 

  2. Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    Article  CAS  Google Scholar 

  3. Chunnilall, C. J. et al. Metrology of single-photon sources and detectors: a review. Opt. Eng. 53, 081910 (2014).

    Article  Google Scholar 

  4. Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012).

    Article  Google Scholar 

  5. Shin, D. et al. Photon-efficient imaging with a single-photon camera. Nat. Commun. 7, 12046 (2016).

    Article  CAS  Google Scholar 

  6. Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–204 (2013).

    Article  CAS  Google Scholar 

  7. Altena, R., Perik, P. J., van Veldhuisen, D. J., de Vries, E. G. & Gietema, J. A. Cardiovascular toxicity caused by cancer treatment: strategies for early detection. Lancet Oncol. 10, 391–399 (2009).

    Article  CAS  Google Scholar 

  8. El-Desouki, M. M., Palubiak, D., Deen, M. J., Fang, Q. & Marinov, O. A novel, high-dynamic-range, high-speed, and high-sensitivity CMOS imager using time-domain single-photon counting and avalanche photodiodes. IEEE Sens. J. 11, 1078–1083 (2011).

    Article  CAS  Google Scholar 

  9. Tsang, J. C., Kash, J. A. & Vallett, D. P. Picosecond imaging circuit analysis. IBM J. Res. Dev. 44, 583–603 (2000).

    Article  CAS  Google Scholar 

  10. Single Quantum Eos. SNSPD Closed-Cycle System (Single Quantum, 2018); http://singlequantum.com/wp-content/uploads/2018/08/Single-Quantum-Eos.pdf

  11. Li, H. W. et al. Quantum dot resonant tunneling diode single photon detector with aluminum oxide aperture defined tunneling area. Appl. Phys. Lett. 93, 153503 (2008).

    Article  Google Scholar 

  12. Rowe, M. A. et al. Single-photon detection using a quantum dot optically gated field-effect transistor with high internal quantum efficiency. Appl. Phys. Lett. 89, 253505 (2006).

    Article  Google Scholar 

  13. Xia, F., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009).

    Article  CAS  Google Scholar 

  14. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014).

    Article  CAS  Google Scholar 

  15. Konstantatos, G. et al. Hybrid graphene quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).

    Article  CAS  Google Scholar 

  16. Vallone, G. et al. Experimental satellite quantum communications. Phys. Rev. Lett. 115, 040502 (2015).

    Article  Google Scholar 

  17. Bedington, R. et al. Nanosatellite experiments to enable future space-based QKD missions. EPJ Quantum Technol. 3, 12 (2016).

    Article  Google Scholar 

  18. Oi, D. K. L. et al. Nanosatellites for quantum science and technology. Contemp. Phys. 58, 25–52 (2017).

    Article  Google Scholar 

  19. Hu, L. & Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249–3252 (2007).

    Article  CAS  Google Scholar 

  20. Anttu, N. et al. Absorption of light in InP nanowire arrays. Nano Res. 7, 816–823 (2014).

    Article  CAS  Google Scholar 

  21. Wallentin, J. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339, 1057–1060 (2013).

    Article  CAS  Google Scholar 

  22. Fountaine, K. T., Kendall, C. G. & Atwater, H. A. Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation. Opt. Express 22, A930–A940 (2014).

    Article  CAS  Google Scholar 

  23. Fountaine, K. T., Cheng, W. H., Bukowsky, C. R. & Atwater, H. A. Near-unity unselective absorption in sparse InP nanowire arrays. ACS Photon. 3, 1826–1832 (2016).

    Article  CAS  Google Scholar 

  24. Azizur-Rahman, K. M. & LaPierre, R. R. Wavelength-selective absorptance in GaAs, InP and InAs nanowire arrays. Nanotechnology 26, 295202 (2015).

    Article  CAS  Google Scholar 

  25. Namekata, N., Adachi, S. & Inoue, S. Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths. IEEE Photon. Technol. Lett. 22, 529–531 (2010).

    Article  Google Scholar 

  26. Liang, Y. et al. Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode. IEEE Photon. Technol. Lett. 23, 887–889 (2011).

    Article  Google Scholar 

  27. Acerbi, F., Frera, A., Della, Tosi, A. & Zappa, F. Fast active quenching circuit for reducing avalanche charge and afterpulsing in InGaAs/InP single-photon avalanche diode. IEEE J. Quantum Electron. 49, 563–569 (2013).

    Article  CAS  Google Scholar 

  28. Liu, J. et al. Fast active-quenching circuit for free-running InGaAs(P)/InP single-photon avalanche diodes. IEEE J. Quantum Electron. 52, 4000306 (2016).

    Article  Google Scholar 

  29. Itzler, M. A., Jiang, X., Nyman, B. & InP-based, K. S. Negative feedback avalanche diodes. Proc. SPIE 7222, 72221K (2009).

    Article  Google Scholar 

  30. Lunghi, T. et al. Free-running single-photon detection based on a negative feedback InGaAs APD. J. Mod. Opt. 59, 1481–1488 (2012).

    Article  CAS  Google Scholar 

  31. Sze, S., Simon, M. & Kwok, K. N. Physics of Semiconductor Devices (Wiley, New York, 2006).

  32. Zheng, D. et al. When nanowires meet ultrahigh ferroelectric field-high-performance full-depleted nanowire photodetectors. Nano Lett. 16, 2548–2555 (2016).

    Article  CAS  Google Scholar 

  33. Bulgarini, G. et al. Avalanche amplification of a single exciton in a semiconductor nanowire. Nat. Photon. 6, 455–458 (2012).

    Article  CAS  Google Scholar 

  34. Shen, L., Pun, E. Y. B. & Ho, J. C. Recent developments in III–V semiconducting nanowires for high performance photodetectors. Mater. Chem. Front. 1, 630–645 (2017).

    Article  CAS  Google Scholar 

  35. Ko, W. S. et al. Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon. Sci. Rep. 6, 33368 (2016).

    Article  CAS  Google Scholar 

  36. VJ, L. et al. A perspective on nanowire photodetectors: current status, future challenges, and opportunities. IEEE J. Sel. Top. Quantum Electron. 17, 1002–1032 (2011).

    Article  Google Scholar 

  37. Xu, Q. & Dan, Y. Uncovering the density of nanowire surface trap states hidden in the transient photoconductance. Nanoscale 8, 15934–15938 (2016).

    Article  CAS  Google Scholar 

  38. Zhang, A., Kim, H., Cheng, J. & Lo, Y.-H. Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors. Nano Lett. 10, 2117–2120 (2010).

    Article  CAS  Google Scholar 

  39. Cui, Y. High-efficiency Nanowire Solar Cells. PhD thesis, Eindhoven Univ. Technology (2015).

  40. Assefa, S., Xia, F. & Vlasov, Y. A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80–84 (2010).

    Article  CAS  Google Scholar 

  41. Saleh, B. E. A., Hayat, M. M. & Teich, M. C. Effect of dead space on the excess noise factor and time response of avalanche photodiodes. IEEE Trans. Electron Devices 37, 1976–1984 (1990).

    Article  Google Scholar 

  42. Saleh, M. A. et al. Impact-ionization and noise characteristics of thin III–V avalanche photodiodes. IEEE Trans. Electron Devices 48, 2722–2731 (2001).

    Article  CAS  Google Scholar 

  43. Senanayake, P. et al. Thin 3D multiplication regions in plasmonically enhanced nanopillar avalanche detectors. Nano Lett. 12, 6448–6452 (2012).

    Article  CAS  Google Scholar 

  44. Farrell, A. C. et al. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes. Sci. Rep. 5, 17580 (2015).

    Article  CAS  Google Scholar 

  45. Logeeswaran, V. J. et al. A 14-ps full width at half maximum high-speed photoconductor fabricated with intersecting InP nanowires on an amorphous surface. Appl. Phys. A 91, 1–5 (2008).

    Article  CAS  Google Scholar 

  46. Tosi, A., Calandri, N., Sanzaro, M. & Acerbi, F. Low-noise, low jitter, high detection efficiency InGaAs/InP single-photon avalanche diode. IEEE J. Sel. Top. Quantum Electron. 20, 1 (2014).

    Article  Google Scholar 

  47. Namekata, N., Adachi, S. & Inoue, S. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. Opt. Express 17, 6275–6282 (2009).

    Article  CAS  Google Scholar 

  48. Ma, C. L. F., Deen, M. J. & Tarof, L. E. Multiplication in separate absorption, grading, charge, and multiplication InP–InGaAs avalanche photodiodes. IEEE J. Quantum Electron. 31, 2078–2088 (1995).

    Article  CAS  Google Scholar 

  49. Brennan, K. Theory of the doped quantum well superlattice APD: a new solid-state photomultiplier. IEEE J. Quantum Electron. 22, 1999–2016 (1986).

    Article  Google Scholar 

  50. Yue, A.-W., Wang, R.-F., Xiong, B. & Shi, J. Fabrication of a 10 Gb/s InGaAs/InP avalanche photodiode with an AlGaInAs/InP distributed Bragg reflector. Chin. Phys. Lett. 30, 038501 (2013).

    Article  Google Scholar 

  51. van Dam, D. et al. High-efficiency nanowire solar cells with omnidirectionally enhanced absorption due to self-aligned indium-tin-oxide Mie scatterers. ACS Nano 10, 11414–11419 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.J.G. and M.E.R. thank R. Ronaldo for help with the electronics set-up, J. P. Bourgoin for assistance with the optics and V. Zwiller for useful discussions. The authors also thank S. Kölling, who prepared the cross-sectional lamella by focused ion beam (FIB), and M. A. Verheijen, who performed the TEM analysis included in the Supplementary Information. The authors thank D. van Dam et al.51 for data used in Fig. 2b–d. This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund and Industry Canada.

Author information

Authors and Affiliations

Authors

Contributions

S.J.G. performed the photocurrent testing. S.J.G., B.v.K., B.T. and M.E.R. wrote the manuscript, with input from all authors. D.v.D. and B.v.K. performed the optical measurements and simulations. B.T. performed the temperature-dependent dark current measurements and device simulations of the depleted nanowire core. Y.C. fabricated the devices. M.E.R. supervised the work. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Michael E. Reimer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Nanotechnology thanks Zhiyong Fan and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibson, S.J., van Kasteren, B., Tekcan, B. et al. Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection. Nat. Nanotechnol. 14, 473–479 (2019). https://doi.org/10.1038/s41565-019-0393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-019-0393-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing