Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields

Abstract

Spintronic devices based on antiferromagnetic (AFM) materials hold the promise of fast switching speeds and robustness against magnetic fields1,2,3. Different device concepts have been predicted4,5 and experimentally demonstrated, such as low-temperature AFM tunnel junctions that operate as spin-valves6, or room-temperature AFM memory, for which either thermal heating in combination with magnetic fields7 or Néel spin–orbit torque8 is used for the information writing process. On the other hand, piezoelectric materials were employed to control magnetism by electric fields in multiferroic heterostructures9,10,11,12, which suppresses Joule heating caused by switching currents and may enable low-energy-consuming electronic devices. Here, we combine the two material classes to explore changes in the resistance of the high-Néel-temperature antiferromagnet MnPt induced by piezoelectric strain. We find two non-volatile resistance states at room temperature and zero electric field that are stable in magnetic fields up to 60 T. Furthermore, the strain-induced resistance switching process is insensitive to magnetic fields. Integration in a tunnel junction can further amplify the electroresistance. The tunnelling anisotropic magnetoresistance reaches ~11.2% at room temperature. Overall, we demonstrate a piezoelectric, strain-controlled AFM memory that is fully operational in strong magnetic fields and has the potential for low-energy and high-density memory applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and AFM order of MnPt.
Fig. 2: Magneto- and electrotransport properties of the MnPt film at room temperature.
Fig. 3: Possible mechanism for the electroresistance modulation in the MnPt film.
Fig. 4: Piezoelectric strain-controlled AFM memory based on the MnPt/PMN–PT heterostructure insensitive to magnetic fields.
Fig. 5: Piezoelectric strain-controlled room-temperature AFM tunnel junction.

Similar content being viewed by others

Data availability

The data that support plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

    Article  CAS  Google Scholar 

  2. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

    Article  CAS  Google Scholar 

  3. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  Google Scholar 

  4. Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Article  Google Scholar 

  5. Gomonay, H. V. & Loktev, V. M. Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B 81, 144427 (2010).

    Article  Google Scholar 

  6. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    Article  CAS  Google Scholar 

  7. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    Article  CAS  Google Scholar 

  8. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  CAS  Google Scholar 

  9. Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  10. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

    Article  CAS  Google Scholar 

  11. Xu, M. et al. Progresses of magnetoelectric composite films based on PbMg1/3Nb2/3O3-PbTiO3 single-crystal substrates. Acta Phys. Sin 67, 157506 (2018).

    Google Scholar 

  12. Feng, Z. X., Yan, H. & Liu, Z. Q. Electric-field control of magnetic order: from FeRh to topological antiferromagnetic spintronics. Adv. Electron. Mater. https://doi.org/10.1002/aelm.201800466 (2018).

  13. Krén, E. et al. Magnetic structures and exchange interactions in the Mn–Pt system. Phys. Rev. 171, 574–585 (1968).

    Article  Google Scholar 

  14. Farrow, R. F. C. et al. MnxPt1-x: a new exchange bias material for permalloy. J. Appl. Phys. 81, 4986–4988 (1997).

    Article  CAS  Google Scholar 

  15. Coey, J. M. D. Magnetism and Magnetic Materials (Cambridge Univ. Press, Cambridge, 2009).

  16. Chen, Z. H. et al. Electron accumulation and emergent magnetism in LaMnO3/SrTiO3 heterostructures. Phys. Rev. Lett. 119, 156801 (2017).

    Article  Google Scholar 

  17. Umetsu, R. Y., Fukamichi, K. & Sakuma, A. Electrical and magnetic properties, and electronic structures of pseudo-gap-type antiferromagnetic L10-type MnPt alloys. Mater. Trans. 47, 2–10 (2006).

    Article  CAS  Google Scholar 

  18. Liu, Z. Q. et al. Full electroresistance modulation in a mixed-phase metallic alloy. Phys. Rev. Lett. 116, 097203 (2016).

    Article  CAS  Google Scholar 

  19. Zhang, S. et al. Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature. Phys. Rev. Lett. 108, 137203 (2012).

    Article  CAS  Google Scholar 

  20. Yang, L. et al. Bipolar loop-like non-volatile strain in the (001)-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Sci. Rep. 4, 4591 (2014).

    Article  Google Scholar 

  21. Wu, T. et al. Domain engineered switchable strain states in ferroelectric (011) [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT, x≈0.32) single crystals. J. Appl. Phys. 109, 124101 (2011).

    Article  Google Scholar 

  22. Biegalski, M. D., Dörr, K., Kim, D. H. & Christen, H. M. Applying uniform reversible strain to epitaxial oxide films. Appl. Phys. Lett. 96, 151905 (2010).

    Article  Google Scholar 

  23. Hochstrat, A., Binek, C., Chen, X. & Kleemann, W. Extrinsic control of the exchange bias. J. Magn. Magn. Mater. 272–276, 325–326 (2004).

    Article  Google Scholar 

  24. He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

    Article  CAS  Google Scholar 

  25. Polisetty, S. et al. Piezoelectric tuning of exchange bias in a BaTiO3/Co/CoO heterostructure. Phys. Rev. B 82, 134419 (2010).

    Article  Google Scholar 

  26. Liu, Z. Q. et al. Epitaxial growth of intermetallic MnPt films on oxides and large exchange bias. Adv. Mater. 28, 118–123 (2016).

    Article  CAS  Google Scholar 

  27. Hama, H., Motomura, R., Shinozaki, T. & Tsunoda, Y. Spin–flip transition of L10-type MnPt alloy single crystal studied by neutron scattering. J. Phys. Condens. Matter 19, 176228 (2007).

    Article  Google Scholar 

  28. Liu, Z. Q. et al. Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat. Commun. 9, 41 (2018).

    Article  CAS  Google Scholar 

  29. Lee, Y. et al. Large resistivity modulation in mixed-phase metallic systems. Nat. Commun. 6, 5959 (2015).

    Article  CAS  Google Scholar 

  30. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article  Google Scholar 

  31. Liu, Z. Q. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).

    Article  Google Scholar 

  32. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Zhiqi L. acknowledges financial support from the National Natural Science Foundation of China (NSFC; grant numbers 51822101, 51771009 and 11704018). Z.Z. and Zhiqi L. acknowledge financial support from the NSFC on the Science Foundation Ireland–NSFC Partnership Programme (NSFC grant number 51861135104). S.S. and Zikui L. acknowledge financial support from the US Department of Energy (award number DE-FE0031553). M.C. acknowledges support from Science Foundation Ireland contract 12/RC/2278. Z.C. acknowledges the NSFC (number 51802057) and a startup grant from the Harbin Institute of Technology (Shenzhen, China), under project number DD45001017. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US DOE under contract DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

H.Y. and Z.F. performed the sample growth, electrical and magnetic measurements, with assistance from X.W., Z.H., H.H., W.L., Jingmin W., P.Q., H.G., X.Z., Z. Leng and C.J. Zhiqi L. performed the XRD measurements. Z.C. performed the X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements. H.W. performed the TEM measurements. Jinhua W. and Z.Z. performed the high magnetic field measurements. S.S. and Zikui L. performed the theoretical calculations. Zhiqi L. wrote the manuscript, along with H.Y., Z.F., X.W., Z.H. and M.C. All authors discussed the results and commented on the manuscript. Zhiqi L. conceived and led the project.

Corresponding author

Correspondence to Zhiqi Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Feng, Z., Shang, S. et al. A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nature Nanotech 14, 131–136 (2019). https://doi.org/10.1038/s41565-018-0339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0339-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing