Abstract

High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor (Q = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

  2. 2.

    Staude, I. & Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photon. 11, 274–284 (2017).

  3. 3.

    Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J. & Luk’yanchuk, B. Magnetic light. Sci. Rep. 2, 492 (2012).

  4. 4.

    Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12, 3749–3755 (2012).

  5. 5.

    Yu, Y. F. et al. High‐transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev. 9, 412–418 (2015).

  6. 6.

    Shalaev, M. I. et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261–6266 (2015).

  7. 7.

    Chong, K. E. et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 15, 5369–5374 (2015).

  8. 8.

    Khaidarov, E. et al. Asymmetric nanoantennas for ultrahigh angle broadband visible light bending. Nano Lett. 17, 6267–6272 (2017).

  9. 9.

    Komar, A. et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics 5, 1742–1748 (2018).

  10. 10.

    Emani, N. K. et al. High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths. Appl. Phys. Lett. 111, 221101 (2017).

  11. 11.

    Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

  12. 12.

    Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

  13. 13.

    Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

  14. 14.

    Paniagua-Dominguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).

  15. 15.

    Shcherbakov, M. R. et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 14, 6488–6492 (2014).

  16. 16.

    Liu, S. et al. Resonantly enhanced second-harmonic generation using III−V semiconductor all-dielectric metasurfaces. Nano Lett. 16, 5426–5432 (2016).

  17. 17.

    Camacho-Morales, R. et al. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett. 16, 7191–7197 (2016).

  18. 18.

    Grinblat, G., Li, Y., Nielsen, M. P., Oulton, R. F. & Maier, S. A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett. 16, 4635–4640 (2016).

  19. 19.

    Greffin, J. M. et al. Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3, 1171 (2012).

  20. 20.

    Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Luk’yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013).

  21. 21.

    Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13, 1806–1809 (2013).

  22. 22.

    Zhao, W. et al. Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode. Sci. Rep. 6, 30613 (2016).

  23. 23.

    Chong, K. E. et al. Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms. ASC Photonics 3, 514–519 (2016).

  24. 24.

    Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotech 10, 937–943 (2015).

  25. 25.

    Paniagua-Dominguez, R. et al. Generalized Brewster effect in dielectric metasurfaces. Nat. Commun. 7, 10362 (2016).

  26. 26.

    Staude, I. et al. Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles. ACS Photonics 2, 172–177 (2015).

  27. 27.

    Caldarola, M. et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 6, 7915 (2015).

  28. 28.

    Regmi, R. et al. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules. Nano Lett. 16, 5143–5151 (2016).

  29. 29.

    Dmitriev, P. A. et al. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response. Nanoscale 8, 9721–9726 (2016).

  30. 30.

    Totero Gongora, J. S., Miroshnichenko, A. E., Kivshar, Y. S. & Fratalocchi, A. Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat. Commun. 8, 15535 (2017).

  31. 31.

    Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011).

  32. 32.

    Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

  33. 33.

    Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljacic, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

  34. 34.

    Bulgakov, E. N. & Maksimov, D. N. Light enhancement by quasi-bound states in the continuum in dielectric arrays. Opt. Express 25, 14134–14147 (2017).

  35. 35.

    Rivera, N. et al. Controlling directionality and dimensionality of radiation by perturbing separable bound states in the continuum. Sci. Rep. 6, 33394 (2016).

  36. 36.

    Rybin, M. V. et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901 (2017).

  37. 37.

    Sadrieva, Z. F. et al. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photonics 4, 723–727 (2017).

  38. 38.

    Han, S. et al. All-dielectric active photonics driven by bound states in the continuum. Preprint at https://arxiv.org/abs/1803.01992 (2018).

  39. 39.

    Imada, M. et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. App. Phys. Lett. 75, 316–318 (1999).

  40. 40.

    Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).

  41. 41.

    Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon 8, 406–411 (2014).

  42. 42.

    Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

  43. 43.

    Miyai, E. et al. Photonics: lasers producing tailored beams. Nature 441, 946 (2006).

  44. 44.

    Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljacic, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).

  45. 45.

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn (Wiley, New York, 2007).

  46. 46.

    Palik, E. D. Handbook of Optical Constants of Solids (Elsevier, San Diego, 1997).

  47. 47.

    Liu, S., Keeler, G. A., Reno, J. L., Sinclair, M. B. & Brener, I. III–V semiconductor nanoresonators—a new strategy for passive, active, and nonlinear all-dielectric metamaterials. Adv. Opt. Mater. 4, 1457–1462 (2016).

  48. 48.

    Löchner, F. et al. Polarization-dependent second harmonic diffraction from resonant GaAs metasurfaces. ACS Photonics 5, 1786–1793 (2018).

  49. 49.

    Chang, C. C. et al. Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett. 12, 4484–4489 (2012).

  50. 50.

    Chow, W. W., Jahnke, F. & Gies, C. Emission properties of nanolasers during the transition to lasing. Light Sci. Appl. 3, e201 (2014).

  51. 51.

    Pan, S. H., Gu, Q., Amili, A. E., Vallini, F. & Fainman, Y. Dynamic hysteresis in a coherent high-β nanolaser. Optica 3, 1260–1265 (2016).

  52. 52.

    Taghizadeh, A. & Chung, I.-S. Quasi bound states in the continuum with few unit cells of photonic crystal slab. Appl. Phys. Lett. 111, 031114 (2017).

Download references

Acknowledgements

This work was supported by the A*STAR SERC Pharos programme (grant number 152 73 00025; Singapore). We acknowledge L. Krivitskiy and V. Leong Xu Heng for help with photon autocorrelation function measurements, and V. Valuckas for SEM characterization.

Author information

Author notes

    • Son Tung Ha
    • , Zhenying Pan
    • , Reuben M. Bakker
    • , Ramón Paniagua-Domínguez
    •  & Arseniy I. Kuznetsov

    Present address: Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore

    • Yuan Hsing Fu

    Present address: Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore

    • Naresh Kumar Emani

    Present address: Indian Institute of Technology, Hyderabad, India

  1. These authors contributed equally: Son Tung Ha, Yuan Hsing Fu, Naresh Kumar Emani.

Affiliations

  1. Data Storage Institute, Agency for Science, Technology and Research, Singapore, Singapore

    • Son Tung Ha
    • , Yuan Hsing Fu
    • , Naresh Kumar Emani
    • , Zhenying Pan
    • , Reuben M. Bakker
    • , Ramón Paniagua-Domínguez
    •  & Arseniy I. Kuznetsov

Authors

  1. Search for Son Tung Ha in:

  2. Search for Yuan Hsing Fu in:

  3. Search for Naresh Kumar Emani in:

  4. Search for Zhenying Pan in:

  5. Search for Reuben M. Bakker in:

  6. Search for Ramón Paniagua-Domínguez in:

  7. Search for Arseniy I. Kuznetsov in:

Contributions

S.T.H. and Y.H.F. constructed the low-temperature emission measurement set-up and performed the optical characterization. S.T.H. performed the photon autocorrelation measurements and wrote the first draft of the manuscript. N.K.E. optimized the fabrication process, prepared the samples and performed initial-stage optical characterization and analyses. Z.P. assisted in constructing the low-temperature emission measurement set-up. R.M.B. helped with the initial stage of the optical measurements. R.P.-D. conceived the idea of a BIC laser in the nanoantenna arrays, and performed the simulations. A.I.K. conceived the idea of resonant semiconductor nanoantenna lasers and supervised the work. All authors discussed the results and worked on the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Arseniy I. Kuznetsov.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–11, Supplementary References

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41565-018-0245-5