Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directional lasing in resonant semiconductor nanoantenna arrays

Abstract

High-index dielectric and semiconductor nanoparticles supporting strong electric and magnetic resonances have drawn significant attention in recent years. However, until now, there have been no experimental reports of lasing action from such nanostructures. Here, we demonstrate directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum generated by the collective, vertical electric dipole resonances excited in the nanopillars for subdiffractive arrays. We control the directionality of the emitted light while maintaining a high quality factor (Q = 2,750). The lasing directivity and wavelength can be tuned via the nanoantenna array geometry and by modifying the gain spectrum of GaAs with temperature. The obtained results provide guidelines for achieving surface-emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the resonant dielectric nanoantenna array.
Fig. 2: Resonant modes in the GaAs nanopillar array.
Fig. 3: Lasing action in the resonant semiconductor nanoantenna array.
Fig. 4: Wavelength-tunable lasing in dielectric nanoantenna array.

Similar content being viewed by others

References

  1. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article  Google Scholar 

  2. Staude, I. & Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photon. 11, 274–284 (2017).

    Article  CAS  Google Scholar 

  3. Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J. & Luk’yanchuk, B. Magnetic light. Sci. Rep. 2, 492 (2012).

    Article  Google Scholar 

  4. Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12, 3749–3755 (2012).

    Article  CAS  Google Scholar 

  5. Yu, Y. F. et al. High‐transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev. 9, 412–418 (2015).

    Article  CAS  Google Scholar 

  6. Shalaev, M. I. et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 15, 6261–6266 (2015).

    Article  CAS  Google Scholar 

  7. Chong, K. E. et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 15, 5369–5374 (2015).

    Article  CAS  Google Scholar 

  8. Khaidarov, E. et al. Asymmetric nanoantennas for ultrahigh angle broadband visible light bending. Nano Lett. 17, 6267–6272 (2017).

    Article  CAS  Google Scholar 

  9. Komar, A. et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics 5, 1742–1748 (2018).

    Article  CAS  Google Scholar 

  10. Emani, N. K. et al. High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths. Appl. Phys. Lett. 111, 221101 (2017).

    Article  Google Scholar 

  11. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  CAS  Google Scholar 

  12. Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

    Article  CAS  Google Scholar 

  13. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  CAS  Google Scholar 

  14. Paniagua-Dominguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).

    Article  CAS  Google Scholar 

  15. Shcherbakov, M. R. et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 14, 6488–6492 (2014).

    Article  CAS  Google Scholar 

  16. Liu, S. et al. Resonantly enhanced second-harmonic generation using III−V semiconductor all-dielectric metasurfaces. Nano Lett. 16, 5426–5432 (2016).

    Article  CAS  Google Scholar 

  17. Camacho-Morales, R. et al. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett. 16, 7191–7197 (2016).

    Article  CAS  Google Scholar 

  18. Grinblat, G., Li, Y., Nielsen, M. P., Oulton, R. F. & Maier, S. A. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett. 16, 4635–4640 (2016).

    Article  CAS  Google Scholar 

  19. Greffin, J. M. et al. Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3, 1171 (2012).

    Article  Google Scholar 

  20. Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Luk’yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013).

    Article  Google Scholar 

  21. Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13, 1806–1809 (2013).

    Article  CAS  Google Scholar 

  22. Zhao, W. et al. Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode. Sci. Rep. 6, 30613 (2016).

    Article  CAS  Google Scholar 

  23. Chong, K. E. et al. Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms. ASC Photonics 3, 514–519 (2016).

    CAS  Google Scholar 

  24. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotech 10, 937–943 (2015).

    Article  CAS  Google Scholar 

  25. Paniagua-Dominguez, R. et al. Generalized Brewster effect in dielectric metasurfaces. Nat. Commun. 7, 10362 (2016).

    Article  CAS  Google Scholar 

  26. Staude, I. et al. Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles. ACS Photonics 2, 172–177 (2015).

    Article  CAS  Google Scholar 

  27. Caldarola, M. et al. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 6, 7915 (2015).

    Article  CAS  Google Scholar 

  28. Regmi, R. et al. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules. Nano Lett. 16, 5143–5151 (2016).

    Article  CAS  Google Scholar 

  29. Dmitriev, P. A. et al. Resonant Raman scattering from silicon nanoparticles enhanced by magnetic response. Nanoscale 8, 9721–9726 (2016).

    Article  CAS  Google Scholar 

  30. Totero Gongora, J. S., Miroshnichenko, A. E., Kivshar, Y. S. & Fratalocchi, A. Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat. Commun. 8, 15535 (2017).

    Article  CAS  Google Scholar 

  31. Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011).

    Article  Google Scholar 

  32. Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

    Article  CAS  Google Scholar 

  33. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljacic, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    Article  CAS  Google Scholar 

  34. Bulgakov, E. N. & Maksimov, D. N. Light enhancement by quasi-bound states in the continuum in dielectric arrays. Opt. Express 25, 14134–14147 (2017).

    Article  CAS  Google Scholar 

  35. Rivera, N. et al. Controlling directionality and dimensionality of radiation by perturbing separable bound states in the continuum. Sci. Rep. 6, 33394 (2016).

    Article  CAS  Google Scholar 

  36. Rybin, M. V. et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett. 119, 243901 (2017).

    Article  Google Scholar 

  37. Sadrieva, Z. F. et al. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photonics 4, 723–727 (2017).

    Article  CAS  Google Scholar 

  38. Han, S. et al. All-dielectric active photonics driven by bound states in the continuum. Preprint at https://arxiv.org/abs/1803.01992 (2018).

  39. Imada, M. et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. App. Phys. Lett. 75, 316–318 (1999).

    Article  CAS  Google Scholar 

  40. Noda, S., Yokoyama, M., Imada, M., Chutinan, A. & Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science 293, 1123–1125 (2001).

    Article  CAS  Google Scholar 

  41. Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon 8, 406–411 (2014).

    Article  CAS  Google Scholar 

  42. Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    Article  CAS  Google Scholar 

  43. Miyai, E. et al. Photonics: lasers producing tailored beams. Nature 441, 946 (2006).

    Article  CAS  Google Scholar 

  44. Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljacic, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).

    Article  Google Scholar 

  45. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn (Wiley, New York, 2007).

  46. Palik, E. D. Handbook of Optical Constants of Solids (Elsevier, San Diego, 1997).

    Chapter  Google Scholar 

  47. Liu, S., Keeler, G. A., Reno, J. L., Sinclair, M. B. & Brener, I. III–V semiconductor nanoresonators—a new strategy for passive, active, and nonlinear all-dielectric metamaterials. Adv. Opt. Mater. 4, 1457–1462 (2016).

    Article  CAS  Google Scholar 

  48. Löchner, F. et al. Polarization-dependent second harmonic diffraction from resonant GaAs metasurfaces. ACS Photonics 5, 1786–1793 (2018).

    Article  Google Scholar 

  49. Chang, C. C. et al. Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett. 12, 4484–4489 (2012).

    Article  CAS  Google Scholar 

  50. Chow, W. W., Jahnke, F. & Gies, C. Emission properties of nanolasers during the transition to lasing. Light Sci. Appl. 3, e201 (2014).

    Article  CAS  Google Scholar 

  51. Pan, S. H., Gu, Q., Amili, A. E., Vallini, F. & Fainman, Y. Dynamic hysteresis in a coherent high-β nanolaser. Optica 3, 1260–1265 (2016).

    Article  CAS  Google Scholar 

  52. Taghizadeh, A. & Chung, I.-S. Quasi bound states in the continuum with few unit cells of photonic crystal slab. Appl. Phys. Lett. 111, 031114 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the A*STAR SERC Pharos programme (grant number 152 73 00025; Singapore). We acknowledge L. Krivitskiy and V. Leong Xu Heng for help with photon autocorrelation function measurements, and V. Valuckas for SEM characterization.

Author information

Authors and Affiliations

Authors

Contributions

S.T.H. and Y.H.F. constructed the low-temperature emission measurement set-up and performed the optical characterization. S.T.H. performed the photon autocorrelation measurements and wrote the first draft of the manuscript. N.K.E. optimized the fabrication process, prepared the samples and performed initial-stage optical characterization and analyses. Z.P. assisted in constructing the low-temperature emission measurement set-up. R.M.B. helped with the initial stage of the optical measurements. R.P.-D. conceived the idea of a BIC laser in the nanoantenna arrays, and performed the simulations. A.I.K. conceived the idea of resonant semiconductor nanoantenna lasers and supervised the work. All authors discussed the results and worked on the manuscript.

Corresponding author

Correspondence to Arseniy I. Kuznetsov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, S.T., Fu, Y.H., Emani, N.K. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nature Nanotech 13, 1042–1047 (2018). https://doi.org/10.1038/s41565-018-0245-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0245-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing