Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlling magnetism in 2D CrI3 by electrostatic doping

Abstract

The atomic thickness of two-dimensional materials provides a unique opportunity to control their electrical1 and optical2 properties as well as to drive the electronic phase transitions3 by electrostatic doping. The discovery of two-dimensional magnetic materials4,5,6,7,8,9,10 has opened up the prospect of the electrical control of magnetism and the realization of new functional devices11. A recent experiment based on the linear magneto-electric effect has demonstrated control of the magnetic order in bilayer CrI3 by electric fields12. However, this approach is limited to non-centrosymmetric materials11,13,14,15,16 magnetically biased near the antiferromagnet–ferromagnet transition. Here, we demonstrate control of the magnetic properties of both monolayer and bilayer CrI3 by electrostatic doping using CrI3–graphene vertical heterostructures. In monolayer CrI3, doping significantly modifies the saturation magnetization, coercive force and Curie temperature, showing strengthened/weakened magnetic order with hole/electron doping. Remarkably, in bilayer CrI3, the electron doping above ~2.5 × 1013 cm−2 induces a transition from an antiferromagnetic to a ferromagnetic ground state in the absence of a magnetic field. The result reveals a strongly doping-dependent interlayer exchange coupling, which enables robust switching of magnetization in bilayer CrI3 by small gate voltages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 2D CrI3 field-effect devices.
Fig. 2: Controlling ferromagnetism in monolayer CrI3 by doping.
Fig. 3: Doping-controlled interlayer magnetism in bilayer CrI3.
Fig. 4: Switching of magnetism in 2D CrI3 by electrostatic doping.

Similar content being viewed by others

References

  1. Novoselov, K. S. Nobel lecture: Graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011).

    Article  Google Scholar 

  2. Sun, Z., Martinez, A. & Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 10, 227–238 (2016).

    Article  Google Scholar 

  3. Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2016).

    Article  Google Scholar 

  4. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  Google Scholar 

  5. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  Google Scholar 

  6. Yao, T., Mason, J. G., Huiwen, J., Cava, R. J. & Kenneth, S. B. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 3, 025035 (2016).

    Article  Google Scholar 

  7. Du, K.-z et al. Weak Van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano 10, 1738–1743 (2016).

    Article  Google Scholar 

  8. Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    Article  Google Scholar 

  9. Zhou, B. et al. Possible structural transformation and enhanced magnetic fluctuations in exfoliated α-RuCl3. J. Phys. Chem. Solids (in the press).

  10. Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotech. http://doi.org/10.1038/s41565-018-0063-9 (2018).

  11. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

    Article  Google Scholar 

  12. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. http://doi.org/10.1038/s41563-018-0040-6 (2018).

  13. Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008).

    Article  Google Scholar 

  14. He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

    Article  Google Scholar 

  15. Heron, J. T. et al. Electric-field-Induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).

    Article  Google Scholar 

  16. Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756–761 (2010).

    Article  Google Scholar 

  17. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  Google Scholar 

  18. Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003).

    Article  Google Scholar 

  19. Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    Article  Google Scholar 

  20. Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Article  Google Scholar 

  21. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  22. McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    Article  Google Scholar 

  23. Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).

    Article  Google Scholar 

  24. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Preprint at https://arxiv.org/abs/1801.08679 (2018).

  25. Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Preprint at https://arxiv.org/abs/1801.08188 (2018).

  26. Stryjewski, E. & Giordano, N. Metamagnetism. Adv. Phys. 26, 487–650 (1977).

    Article  Google Scholar 

  27. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  Google Scholar 

  28. Fallahazad, B. et al. Shubnikov-de Haas oscillations of high-mobility holes in monolayer and bilayer WSe2: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).

    Article  Google Scholar 

  29. Wang, H., Eyert, V. & Schwingenschlögl, U. Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3. J. Phys. Condens. Matter 23, 116003 (2011).

    Article  Google Scholar 

  30. Blundell, S. Magnetism in Condensed Matter (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  31. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  Google Scholar 

  32. Arnold, C. S., Dunlavy, M. & Venus, D. Magnetic susceptibility measurements of ultrathin films using the surface magneto-optic Kerr effect: Optimization of the signal-to-noise ratio. Rev. Sci. Instrum. 68, 4212–4216 (1997).

    Article  Google Scholar 

  33. Wang, Z., Chiu, Y.-H., Honz, K., Mak, K. F. & Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 18, 137–143 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the ARO Award W911NF-17-1-0605 for sample and device fabrication and the Air Force Office of Scientific Research under grant FA9550-16-1-0249 for optical spectroscopy measurements. We also acknowledge support from the National Science Foundation under Award No. DMR-1420451 (L.L.) and DMR-1410407 (Z.W.), and a David and Lucille Packard Fellowship and a Sloan Fellowship (K.F.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.J., K.F.M. and J.S. designed the study and co-wrote the manuscript. S.J. performed the bulk of the measurements and data analysis. L.L and Z.W. contributed to the sample and device fabrication. Z.W. and S.J. developed the experimental set-up. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Kin Fai Mak or Jie Shan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Li, L., Wang, Z. et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nature Nanotech 13, 549–553 (2018). https://doi.org/10.1038/s41565-018-0135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0135-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing