Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calcium-dependent molecular fMRI using a magnetic nanosensor

Abstract

Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales1. Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue2. Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca2+] changes in the 0.1–1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and in vitro characterization of MaCaReNas.
Fig. 2: MaCaReNa calcium-binding activity correlates with MRI contrast in vivo.
Fig. 3: MaCaReNas report dynamic Ca2+ fluctuations in living rat brains.
Fig. 4: MaCaReNas report striatal responses to medial forebrain stimulation.

Similar content being viewed by others

References

  1. Südhof, T. C. Calcium control of neurotransmitter release. Cold Spring Harb. Perspect. Biol. 4, a011353 (2012).

    Article  Google Scholar 

  2. Bartelle, B. B., Barandov, A. & Jasanoff, A. Molecular fMRI. J. Neurosci. 36, 4139–4148 (2016).

    Article  Google Scholar 

  3. Rusakov, D. A. Depletion of extracellular Ca2+ prompts astroglia to moderate synaptic network activity. Sci. Signal 5, pe4 (2012).

    Article  Google Scholar 

  4. Nicholson, C., Bruggencate, G. T., Steinberg, R. & Stöckle, H. Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. Proc. Natl Acad. Sci. USA 74, 1287–1290 (1977).

    Article  Google Scholar 

  5. Smith, S. M. et al. Calcium regulation of spontaneous and asynchronous neurotransmitter release. Cell Calcium 52, 226–233 (2012).

    Article  Google Scholar 

  6. Jones, B. L. & Smith, S. M. Calcium-sensing receptor: a key target for extracellular calcium signaling in neurons. Front. Physiol. 7, 116 (2016).

    Google Scholar 

  7. Urwyler, S. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Pharmacol. Rev. 63, 59–126 (2011).

    Article  Google Scholar 

  8. Egelman, D. M. & Montague, P. R. Calcium dynamics in the extracellular space of mammalian neural tissue. Biophys. J. 76, 1856–1867 (1999).

    Article  Google Scholar 

  9. Wiest, M. C., Eagleman, D. M., King, R. D. & Montague, P. R. Dendritic spikes and their influence on extracellular calcium signaling. J. Neurophysiol. 83, 1329–1337 (2000).

    Article  Google Scholar 

  10. Ding, F. et al. Changes in the composition of brain interstitial ions control the sleep–wake cycle. Science 352, 550–555 (2016).

    Article  Google Scholar 

  11. Dal Prà, I. et al. Calcium-sensing receptors of human astrocyte–neuron teams: amyloid-β-driven mediators and therapeutic targets of Alzheimer’s disease. Curr. Neuropharmacol. 12, 353–364 (2014).

    Article  Google Scholar 

  12. Li, W.-H., Fraser, S. E. & Meade, T. J. A calcium-sensitive magnetic resonance imaging contrast agent. J. Am. Chem. Soc. 121, 1413–1414 (1999).

    Article  Google Scholar 

  13. Atanasijevic, T., Shusteff, M., Fam, P. & Jasanoff, A. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc. Natl Acad. Sci. USA 103, 14707–14712 (2006).

    Article  Google Scholar 

  14. Mamedov, I. et al. In vivo characterization of a smart MRI agent that displays an inverse response to calcium concentration. ACS Chem. Neurosci. 1, 819–828 (2010).

    Article  Google Scholar 

  15. Johnson, I. & Spence, M. T. Z. The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies 11th edn (Life Technologies, Waltham, 2010).

    Google Scholar 

  16. Diao, J., Yoon, T.-Y., Su, Z., Shin, Y.-K. & Ha, T. C2AB: a molecular glue for lipid vesicles with a negatively charged surface. Langmuir 25, 7177–80 (2009).

    Article  Google Scholar 

  17. Lee, J., Guan, Z., Akbergenova, Y. & Littleton, J. T. Genetic analysis of synaptotagmin C2 domain specificity in regulating spontaneous and evoked neurotransmitter release. J. Neurosci. 33, 187–200 (2013).

    Article  Google Scholar 

  18. Matsumoto, Y. & Jasanoff, A. T 2 relaxation induced by clusters of superparamagnetic nanoparticles: Monte Carlo simulations. Magn. Reson. Imaging 26, 994–998 (2008).

    Article  Google Scholar 

  19. Syková, E. & Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008).

    Article  Google Scholar 

  20. Tyn, M. T. & Gusek, T. W. Prediction of diffusion coefficients of proteins. Biotechnol. Bioeng. 35, 327–338 (1990).

    Article  Google Scholar 

  21. Adámek, S. & Vyskočil, F. Potassium-selective microelectrode revealed difference in threshold potassium concentration for cortical spreading depression in female and male rat brain. Brain Res. 1370, 215–219 (2011).

    Article  Google Scholar 

  22. Ciriello, J. & Janssen, S. A. Effect of glutamate stimulation of bed nucleus of the stria terminalis on arterial pressure and heart rate. Am. J. Physiol. 265, H1516–H1522 (1993).

    Google Scholar 

  23. Olds, J. & Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, 419–427 (1954).

    Article  Google Scholar 

  24. Lee, T., Cai, L. X., Lelyveld, V. S., Hai, A. & Jasanoff, A. Molecular-level functional magnetic resonance imaging of dopaminergic signaling. Science 344, 533–535 (2014).

    Article  Google Scholar 

  25. Fiallos, A. M. et al. Reward magnitude tracking by neural populations in ventral striatum. NeuroImage 146, 1003–1015 (2017).

    Article  Google Scholar 

  26. Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. & Nichols, T. E. Statistical Parametric Mapping: The Analysis of Functional Brain Images (Academic Press, Cambridge, 2011).

  27. Keene, J. J. Prolonged unit responses in thalamic reticular, ventral, and posterior nuclei following lateral hypothalamic and midbrain reticular stimulation. J. Neurosci. Res. 1, 459–469 (1975).

    Article  Google Scholar 

  28. Keene, J. J. Prolonged medial forebrain bundle unit responses to rewarding and aversive intracranial stimuli. Brain Res. Bull. 1, 517–522 (1976).

    Article  Google Scholar 

  29. Haun, J. B., Yoon, T.-J., Lee, H. & Weissleder, R. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 291–304 (2010).

    Article  Google Scholar 

  30. Lewinski, N., Colvin, V. & Drezek, R. Cytotoxicity of nanoparticles. Small 4, 26–49 (2008).

    Article  Google Scholar 

  31. Tamarit, J., Irazusta, V., Moreno-Cermeño, A. & Ros, J. Colorimetric assay for the quantitation of iron in yeast. Anal. Biochem. 351, 149–151 (2006).

    Article  Google Scholar 

  32. Fuson, K. L., Montes, M., Robert, J. J. & Sutton, R. B. Structure of human synaptotagmin 1 C2AB in the absence of Ca2+ reveals a novel domain association. Biochemistry 46, 13041–13048 (2007).

    Article  Google Scholar 

  33. Szulc, K. U. et al. MRI analysis of cerebellar and vestibular developmental phenotypes in Gbx2 conditional knockout mice. Magn. Reson. Med. 70, 1707–1717 (2013).

    Article  Google Scholar 

  34. Paxinos, G., & Watson, C. The Rat Brain in Stereotaxic Coordinates: The New Coronal Set 5th edn (Elsevier, Amsterdam, 2004).

    Google Scholar 

Download references

Acknowledgements

Project funding was provided by NIH grants R01-DA038642, DP2-OD2114, BRAIN Initiative award U01-NS090451 and an MIT Simons Center for the Social Brain Seed Grant to A.J., as well as NIH grant R01-EY007023 to M.S. S.O. was supported by RGO, a JSPS Postdoctoral Fellowship for Research Abroad and an Uehara Memorial Foundation postdoctoral fellowship. E.R. was supported by a Beatriu de Pinós Fellowship from the Government of Catalonia. We thank W. White for assistance with the BLI experiments, S. Bricault for help with data analysis and D. Pheasant at the MIT Biophysical Instrumentation Facility (BIF) for training and assistance with circular dichroism and BLI measurements; BIF instruments are available thanks to NSF grant 0070319 and NIH grant S10-OD016326. We are grateful to J. T. Littleton and J. Lee for supplying the C2AB-expression clone.

Author information

Authors and Affiliations

Authors

Contributions

S.O., J.J.L., B.B.B. and E.R. performed the in vitro experiments. B.B.B. and J.M. performed the ex vivo experiments. B.B.B., N.L. and S.O. performed in vivo MRI. B.B.B., N.L. and V.B.-P. performed the electrophysiology with supervision and advice from M.S. S.O., B.B.B. and A.J. designed the research and wrote the paper.

Corresponding author

Correspondence to Alan Jasanoff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1–7.

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okada, S., Bartelle, B.B., Li, N. et al. Calcium-dependent molecular fMRI using a magnetic nanosensor. Nature Nanotech 13, 473–477 (2018). https://doi.org/10.1038/s41565-018-0092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0092-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing