Current polarity-dependent manipulation of antiferromagnetic domains

Published online:


Antiferromagnets have several favourable properties as active elements in spintronic devices, including ultra-fast dynamics, zero stray fields and insensitivity to external magnetic fields1. Tetragonal CuMnAs is a testbed system in which the antiferromagnetic order parameter can be switched reversibly at ambient conditions using electrical currents2. In previous experiments, orthogonal in-plane current pulses were used to induce 90° rotations of antiferromagnetic domains and demonstrate the operation of all-electrical memory bits in a multi-terminal geometry3. Here, we demonstrate that antiferromagnetic domain walls can be manipulated to realize stable and reproducible domain changes using only two electrical contacts. This is achieved by using the polarity of the current to switch the sign of the current-induced effective field acting on the antiferromagnetic sublattices. The resulting reversible domain and domain wall reconfigurations are imaged using X-ray magnetic linear dichroism microscopy, and can also be detected electrically. Switching by domain-wall motion can occur at much lower current densities than those needed for coherent domain switching.

  • Subscribe to Nature Nanotechnology for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

  2. 2.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

  3. 3.

    Olejník, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).

  4. 4.

    Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

  5. 5.

    Zhang, X., Liu, Q., Luo, J.-W., Freeman, A. J. & Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nat. Phys. 10, 387–393 (2014).

  6. 6.

    Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

  7. 7.

    Wadley, P. et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat. Commun. 4, 2322 (2013).

  8. 8.

    Grzybowski, M. J. et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017).

  9. 9.

    Bodnar, S. Yu. et al. Writing and reading antiferromagnetic Mn2Au: Néel spin–orbit torques and large anisotropic magnetoresistance.Nat. Commun. 9, 348 (2018).

  10. 10.

    Meinert, M., Graulich, D. & Matalla-Wagner, T. Key role of thermal activation in the electrical switching of antiferromagnetic Mn2Au. Preprint at http://lanl.arxiv.org/abs/1706.06983 (2017).

  11. 11.

    Olejnik, K. et al. THz electrical writing speed in an antiferromagnetic memory. Science Advances (in the press); https://arxiv.org/abs/1711.08444.

  12. 12.

    Gomonay, O., Jungwirth, T. & Sinova, J. High antiferromagnetic domain wall velocity induced by Néel spin-orbit torques. Phys. Rev. Lett. 117, 017202 (2016).

  13. 13.

    Roy, P. E., Otxoa, R. M. & Wunderlich, J. Robust picosecond writing of a layered antiferromagnet by staggered spin-orbit fields. Phys. Rev. B 94, 014439 (2016).

  14. 14.

    Wadley, P. et al. Antiferromagnetic structure in tetragonal CuMnAs thin films. Sci. Rep. 5, 17079 (2015).

  15. 15.

    Shiino, T. et al Antiferromagnetic domain wall motion driven by spin–orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

  16. 16.

    Selzer, S., Atxitia, U., Ritzmann, U., Hinzke, D. & Nowak, U. Inertia-free thermally driven domain-wall motion in antiferromagnets. Phys. Rev. Lett. 117, 107201 (2016).

  17. 17.

    van der Laan, G., Telling, N. D., Potenza, A., Dhesi, S. S. & Arenholz, E. Anisotropic X-ray magnetic linear dichroism and spectromicroscopy of interfacial Co/NiO(001). Phys. Rev. B 83, 064409 (2011).

  18. 18.

    Wadley, P. et al. Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films. Sci. Rep. 7, 11147 (2017).

Download references


We thank the Diamond Light Source for the allocation of beam time under Proposal no. SI16376-1. This work was supported by the Engineering and Physical Sciences Research Council (grant number EP/P019749/1), National Science Centre, Poland (grant 2016/21/N/ST3/03380), the Ministry of Education of the Czech Republic Grants no. LM2015087 and no. LNSM-LNSpin, the Czech National Science Foundation Grant no. 14-37427, the EU FET Open RIA Grant no. 766566 and the ERC Synergy Grant no. 610115. P.W. acknowledges support from the Royal Society through a University Research Fellowship.

Author information

Author notes

  1. These authors contributed equally: Peter Wadley, Sonka Reimers.


  1. School of Physics and Astronomy, University of Nottingham, Nottingham, UK

    • Peter Wadley
    • , Sonka Reimers
    • , Carl Andrews
    • , Mu Wang
    • , Jasbinder S. Chauhan
    • , Bryan L. Gallagher
    • , Richard P. Campion
    • , Kevin W. Edmonds
    •  & Tomas Jungwirth
  2. I. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany

    • Sonka Reimers
  3. Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

    • Michal J. Grzybowski
  4. Diamond Light Source, Chilton, Didcot, UK

    • Sarnjeet S. Dhesi
    •  & Francesco Maccherozzi
  5. Institute of Physics, Academy of Sciences of the Czech Republic, Praha 6, Czech Republic

    • Vit Novak
    • , Joerg Wunderlich
    •  & Tomas Jungwirth
  6. Hitachi Cambridge Laboratory, Cambridge, UK

    • Joerg Wunderlich


  1. Search for Peter Wadley in:

  2. Search for Sonka Reimers in:

  3. Search for Michal J. Grzybowski in:

  4. Search for Carl Andrews in:

  5. Search for Mu Wang in:

  6. Search for Jasbinder S. Chauhan in:

  7. Search for Bryan L. Gallagher in:

  8. Search for Richard P. Campion in:

  9. Search for Kevin W. Edmonds in:

  10. Search for Sarnjeet S. Dhesi in:

  11. Search for Francesco Maccherozzi in:

  12. Search for Vit Novak in:

  13. Search for Joerg Wunderlich in:

  14. Search for Tomas Jungwirth in:


P.W., K.W.E., B.L.G., J.W. and T.J. were responsible for the experimental concept and design. K.W.E. and P.W provided experimental coordination of the project. R.P.C. and V.N. performed the material growth. J.S.C., P.W. and C.A. provided device design and photolithography of devices. S.R., M.J.G., K.W.E, P.W., F.M. and S.S.D. performed XMLD-PEEM measurements and analysis of results. S.R. performed electrical transport measurements and analysis. M.W. supplied magnetometry measurements of the materials. All authors contributed to the interpretation of the results and writing of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Peter Wadley.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–4; Supplementary Text; Supplementary References.