Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ballistic Majorana nanowire devices

An Author Correction to this article was published on 11 March 2024

This article has been updated

Abstract

Majorana modes are zero-energy excitations of a topological superconductor that exhibit non-Abelian statistics1,2,3. Following proposals for their detection in a semiconductor nanowire coupled to an s-wave superconductor4,5, several tunnelling experiments reported characteristic Majorana signatures6,7,8,9,10,11. Reducing disorder has been a prime challenge for these experiments because disorder can mimic the zero-energy signatures of Majoranas12,13,14,15,16, and renders the topological properties inaccessible17,18,19,20. Here, we show characteristic Majorana signatures in InSb nanowire devices exhibiting clear ballistic transport properties. Application of a magnetic field and spatial control of carrier density using local gates generates a zero bias peak that is rigid over a large region in the parameter space of chemical potential, Zeeman energy and tunnel barrier potential. The reduction of disorder allows us to resolve separate regions in the parameter space with and without a zero bias peak, indicating topologically distinct phases. These observations are consistent with the Majorana theory in a ballistic system21, and exclude the known alternative explanations that invoke disorder12,13,14,15,16 or a nonuniform chemical potential22,23.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hybrid device and ballistic transport properties.
Fig. 2: Zero bias peak and its dependence on magnetic field and local gate voltages.
Fig. 3: Dependence of zero bias peak on magnetic field orientation.
Fig. 4: Zero bias peak and phase diagram.

Similar content being viewed by others

Change history

References

  1. Read, N. & Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267 (2000).

    Article  Google Scholar 

  2. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131–136 (2001).

    Article  Google Scholar 

  3. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  Google Scholar 

  4. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  Google Scholar 

  5. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  Google Scholar 

  6. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  Google Scholar 

  7. Das, A. et al. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

    Article  Google Scholar 

  8. Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

    Article  Google Scholar 

  9. Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).

    Article  Google Scholar 

  10. Deng, M. T. et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557–1562 (2016).

    Article  Google Scholar 

  11. Chen, J. et al. Experimental phase diagram of zero-bias conductance peaks in superconductor/semiconductor nanowire devices. Sci. Adv. 3, e1701476 (2017).

    Article  Google Scholar 

  12. Liu, J., Potter, A. C., Law, K. T. & Lee, P. A. Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states. Phys. Rev. Lett. 109, 267002 (2012).

    Article  Google Scholar 

  13. Bagrets, D. & Altland, A. Class D spectral peak in Majorana quantum wires. Phys. Rev. Lett. 109, 227005 (2012).

    Article  Google Scholar 

  14. Pikulin, D. I., Dahlhaus, J. P., Wimmer, M., Schomerus, H. & Beenakker, C. W. J. A zero-voltage conductance peak from weak antilocalization in a Majorana nanowire. New J. Phys. 14, 125011 (2012).

    Article  Google Scholar 

  15. Lee, E. J. H. et al. Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. Phys. Rev. Lett. 109, 186802 (2012).

    Article  Google Scholar 

  16. Lee, E. J. H. et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. Nat. Nanotech. 9, 79–84 (2014).

    Article  Google Scholar 

  17. Takei, S., Fregoso, B. M., Hui, H.-Y., Lobos, A. M. & Das Sarma, S. Soft superconducting gap in semiconductor Majorana nanowires. Phys. Rev. Lett. 110, 186803 (2013).

    Article  Google Scholar 

  18. Chang, W. et al. Hard gap in epitaxial semiconductor–superconductor nanowires. Nat. Nanotech. 10, 232–236 (2015).

    Article  Google Scholar 

  19. Gül, Ö. et al. Hard superconducting gap in InSb nanowires. Nano Lett. 17, 2690–2696 (2017).

    Article  Google Scholar 

  20. Zhang, H. et al. Ballistic superconductivity in semiconductor nanowires. Nat. Commun. 8, 16025 (2017).

    Article  Google Scholar 

  21. Liu, C.-X., Sau, J. D. & Das Sarma, S. Role of dissipation in realistic Majorana nanowires. Phys. Rev. B 95, 054502 (2017).

    Article  Google Scholar 

  22. Liu, C.-X., Sau, J. D., Stanescu, T. D. & Das Sarma, S. Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: trivial versus topological zero-bias conductance peaks. Phys. Rev. B 96, 075161 (2017).

    Article  Google Scholar 

  23. Prada, E., San-Jose, P. & Aguado, R. Transport spectroscopy of NS nanowire junctions with Majorana fermions. Phys. Rev. B 86, 180503(R) (2012).

    Article  Google Scholar 

  24. Gazibegovic, S. et al. Epitaxy of advanced nanowire quantum devices. Nature 548, 434–438 (2017).

    Article  Google Scholar 

  25. Kammhuber, J. et al. Conductance quantization at zero magnetic field in InSb nanowires. Nano. Lett. 16, 3482–3486 (2016).

    Article  Google Scholar 

  26. Kammhuber, J. et al. Conductance through a helical state in an indium antimonide nanowire. Nat. Commun. 8, 478 (2017).

    Article  Google Scholar 

  27. Cole, W. S., Sau, J. D. & Das Sarma, S. Proximity effect and Majorana bound states in clean semiconductor nanowires coupled to disordered superconductors. Phys. Rev. B 94, 150505(R) (2017).

    Google Scholar 

  28. Stanescu, T. D. & Das Sarma, S. Proximity-induced low-energy renormalization in hybrid semiconductor-superconductor Majorana structures. Phys. Rev. B 96, 014510 (2017).

    Article  Google Scholar 

  29. Zhang, H. et al. Quantized Majorana conductance. Preprint at https://arxiv.org/abs/1710.10701 (2017).

  30. Osca, J., Ruiz, D. & Serra, L. Effects of tilting the magnetic field in one-dimensional Majorana nanowires. Phys. Rev. B 89, 245405 (2014).

    Article  Google Scholar 

  31. Rex, S. & Sudbø, A. Tilting of the magnetic field in Majorana nanowires: critical angle and zero-energy differential conductance. Phys. Rev. B 90, 115429 (2014).

    Article  Google Scholar 

  32. Nijholt, B. & Akhmerov, A. R. Orbital effect of magnetic field on the Majorana phase diagram. Phys. Rev. B 93, 235434 (2016).

    Article  Google Scholar 

  33. Mishmash, R. V., Aasen, D., Higginbotham, A. P. & Alicea, J. Approaching a topological phase transition in Majorana nanowires. Phys. Rev. B 93, 245404 (2016).

    Article  Google Scholar 

  34. Vuik, A., Eeltink, D., Akhmerov, A. R. & Wimmer, M. Effects of the electrostatic environment on the Majorana nanowire devices. New J. Phys. 18, 033013 (2016).

    Article  Google Scholar 

  35. Car, D., Wang, J., Verheijen, M. A., Bakkers, E. P. A. M. & Plissard, S. R. Rationally designed single-crystalline nanowire networks. Adv. Mater. 26, 4875–4879 (2014).

    Article  Google Scholar 

  36. Flöhr, K. et al. Manipulating InAs nanowires with submicrometer precision. Rev. Sci. Instrum. 82, 113705 (2011).

    Article  Google Scholar 

  37. Suyatin, D. B., Thelander, C., Björk, M. T., Maximov, I. & Samuelson, L. Sulfur passivation for ohmic contact formation to InAs nanowires. Nanotechnology 18, 105307 (2007).

    Article  Google Scholar 

  38. Gül, Ö. et al. Ballistic Majorana nanowire devices. 4TU.ResearchData. https://doi.org/10.4121/uuid:b3f993a7-1b8b-4fd8-8142-5fa577027cdd (2017).

Download references

Acknowledgements

We thank A. R. Akhmerov, O. W. B. Benningshof, M. C. Cassidy, S. Goswami, J. Kammhuber, V. Mourik, M. Quintero-Pérez, J. Shen, M. Wimmer, D. J. van Woerkom and K. Zuo for discussions and assistance. This work has been supported by the Netherlands Organisation for Scientific Research (NWO), European Research Council (ERC) and Microsoft Corporation Station Q.

Author information

Authors and Affiliations

Authors

Contributions

Ö.G., H.Z. and J.D.S.B fabricated the devices, performed the measurements, and analysed the data. M.W.A.d.M. contributed to the device fabrication. D.C., S.P. and E.P.A.M.B. grew the InSb nanowires. A.G. contributed to the experiments. K.W. and T.T. synthesized the hBN crystals. L.P.K. supervised the project. Ö.G., H.Z. and J.D.S.B. co-wrote the paper. All authors commented on the manuscript.

Corresponding authors

Correspondence to Önder Gül, Hao Zhang or Leo P. Kouwenhoven.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Supplementary Text

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gül, Ö., Zhang, H., Bommer, J.D.S. et al. Ballistic Majorana nanowire devices. Nature Nanotech 13, 192–197 (2018). https://doi.org/10.1038/s41565-017-0032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-017-0032-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing