Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling

Abstract

Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1,2,3,4,5,6,7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8,9,10,11,12,13,14,15,16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17,18,19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hot carrier cooling in hBN-encapsulated graphene.
Fig. 2: Effect of doping and lattice temperature.
Fig. 3: Qualitative comparison with hyperbolic hBN cooling.
Fig. 4: Quantitative comparison with hyperbolic hBN cooling.

Similar content being viewed by others

References

  1. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  2. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

    Article  Google Scholar 

  3. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    Article  Google Scholar 

  4. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    Article  Google Scholar 

  5. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in Moiré superlattices. Nature 497, 598–602 (2013).

    Article  Google Scholar 

  6. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    Article  Google Scholar 

  7. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  Google Scholar 

  8. Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    Article  Google Scholar 

  9. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  Google Scholar 

  10. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotech. 9, 780–793 (2014).

    Article  Google Scholar 

  11. Lopez-Sanchez, O. et al. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 8, 3042–3048 (2014).

    Article  Google Scholar 

  12. Bonaccorso, F. et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

    Article  Google Scholar 

  13. Mics, Z. et al. Thermodynamic picture of ultrafast charge transport in graphene. Nat. Commun. 6, 7655 (2015).

    Article  Google Scholar 

  14. Kim, Y. D. et al. Bright visible light emission from graphene. Nat. Nanotech. 10, 676–681 (2015).

    Article  Google Scholar 

  15. Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotech. 11, 42–46 (2016).

    Article  Google Scholar 

  16. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

    Article  Google Scholar 

  17. Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article  Google Scholar 

  18. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  Google Scholar 

  19. Basov, D. N., Fogler, M. M. & Garcia de Abajo, F. J. Polaritons in van der Waals materials. Science 354, 1992 (2016).

    Article  Google Scholar 

  20. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  Google Scholar 

  21. Song, J. C. W. et al. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  Google Scholar 

  22. Kampfrath, T. et al. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys. Rev. Lett. 95, 187403 (2005).

    Article  Google Scholar 

  23. Mihnev, M. T. et al. Microscopic origins of the terahertz carrier relaxation and cooling dynamics in graphene. Nat. Commun. 7, 11617 (2016).

    Article  Google Scholar 

  24. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

    Article  Google Scholar 

  25. Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).

    Article  Google Scholar 

  26. Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron–phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    Article  Google Scholar 

  27. Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013).

    Article  Google Scholar 

  28. Betz, A. C. et al. Supercollision cooling in undoped graphene. Nat. Phys. 9, 109–112 (2013).

    Article  Google Scholar 

  29. Low, T. et al. Cooling of photoexcited carriers in graphene by internal and substrate phonons. Phys. Rev. B 86, 045413 (2012).

    Article  Google Scholar 

  30. Hamm, J. M. et al. Nonequilibrium plasmon emission drives ultrafast carrier relaxation dynamics in photoexcited graphene. Phys. Rev. B 93, 041408 (2016).

    Article  Google Scholar 

  31. Principi, A. et al. Super-Planckian electron cooling in a van der Waals stack. Phys. Rev. Lett. 118, 126804 (2017).

    Article  Google Scholar 

  32. Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).

    Article  Google Scholar 

  33. Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).

    Article  Google Scholar 

  34. Mihnev, M. T. et al. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene. Nat. Commun. 6, 8105 (2015).

    Article  Google Scholar 

  35. Tomadin, A. et al. Accessing phonon polaritons in hyperbolic crystals by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 115, 087401 (2015).

    Article  Google Scholar 

  36. Giuliani, G. F. & Vignale, G. Quantum Theory of the Electron Liquid. (Cambridge Univ. Press, Cambridge, 2005).

    Book  Google Scholar 

  37. Yang, W. et al. A graphene Zener–Klein transistor cooled by a hyperbolic substrate. Nat. Nanotech. https://doi.org/10.1038/s41565-017-0007-9 2017.

  38. Ma, Q. et al. Competing channels for hot-electron cooling in graphene. Phys. Rev. Lett. 112, 247401 (2014).

    Article  Google Scholar 

  39. Jadidi, M. M. et al. Infrared nonlinear photomixing spectroscopy of graphene thermal relaxation. Phys. Rev. Lett. 117, 257401 (2016).

    Article  Google Scholar 

  40. Hwang, E. J., Rossi, E. & Das Sarma, S. Theory of thermopower in two-dimensional graphene. Phys. Rev. B 80, 235415 (2009).

    Article  Google Scholar 

  41. Wunsch, B. et al. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

    Article  Google Scholar 

  42. Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    Article  Google Scholar 

  43. Principi, A., Polini, M. & Vignale, G. Linear response of doped graphene sheets to vector potentials. Phys. Rev. B 80, 075418 (2009).

    Article  Google Scholar 

  44. Kotov, V. N. et al. Electron–electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067 (2012).

    Article  Google Scholar 

  45. Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotech. 2, 31–35 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors thank A. Tomadin and F. Vialla for discussions. This work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 696656, Graphene Flagship, Fondazione Istituto Italiano di Tecnologia, the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0522), Fundacio Cellex Barcelona, Mineco grants Ramon y Cajal (RYC-2012-12281), Plan Nacional (FIS2013-47161-P) and the Government of Catalonia through an SGR grant (2014-SGR-1535), ERC StG CarbonLight (307806), ERC grant Hetero2D, and EPSRC grants EP/K01711X/1, EP/K017144/1, EP/N010345/1 and EP/L016087/1. K.-J.T. acknowledges support from a Mineco Young Investigator Grant (FIS2014-59639-JIN). A.P. acknowledges support from ERC Advanced Grant 338957 FEMTO/NANO and from the NWO via the Spinoza Prize. M.M. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (PGSD3-426325-2012). D.T. acknowledges financial support from the European Union Marie Curie Program (Career Integration grant no. 334324 LIGHTER) and the Max Planck Society. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI (grant nos. JP26248061, JP15K21722 and JP25106006).

Author information

Authors and Affiliations

Authors

Contributions

K.-J.T. and F.H.L.K. conceived the experiment. K.-J.T. and N.C.H.H. performed the time-resolved photocurrent experiments and performed data analysis. A.P., M.P. and M.B.L. developed the theory and performed calculations on hyperbolic cooling. E.A.A.P. performed the optical pump–probe spectroscopy measurements. Z.M. and K.-J.T. performed the optical pump–THz probe spectroscopy measurements. N.C.H.H., M.B.L., L.B., M.M., P.S., D.D., D.G.P., I.G., G.S. and A.L. fabricated devices. K.W. and T.T. contributed hBN material. M.B., D.T., C.S., A.C.F., G.C., M.P. and F.H.L.K. supervised the work and discussed the results. K.-J.T., F.H.L.K. and M.P. wrote the paper, with input from all authors.

Corresponding authors

Correspondence to Klaas-Jan Tielrooij or Frank H. L. Koppens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tielrooij, KJ., Hesp, N.C.H., Principi, A. et al. Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nature Nanotech 13, 41–46 (2018). https://doi.org/10.1038/s41565-017-0008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-017-0008-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing