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Genome-wide association study identifies 
human genetic variants associated with  
fatal outcome from Lassa fever

Infection with Lassa virus (LASV) can cause Lassa fever, a haemorrhagic 
illness with an estimated fatality rate of 29.7%, but causes no or mild 
symptoms in many individuals. Here, to investigate whether human genetic 
variation underlies the heterogeneity of LASV infection, we carried out 
genome-wide association studies (GWAS) as well as seroprevalence surveys, 
human leukocyte antigen typing and high-throughput variant functional 
characterization assays. We analysed Lassa fever susceptibility and fatal 
outcomes in 533 cases of Lassa fever and 1,986 population controls recruited 
over a 7 year period in Nigeria and Sierra Leone. We detected genome-wide 
significant variant associations with Lassa fever fatal outcomes near GRM7 
and LIF in the Nigerian cohort. We also show that a haplotype bearing 
signatures of positive selection and overlapping LARGE1, a required LASV 
entry factor, is associated with decreased risk of Lassa fever in the Nigerian 
cohort but not in the Sierra Leone cohort. Overall, we identified variants and 
genes that may impact the risk of severe Lassa fever, demonstrating how 
GWAS can provide insight into viral pathogenesis.

Lassa fever is an illness that can result from infection with Lassa  
virus (LASV). Initial Lassa fever symptoms (fever, vomiting, cough, 
sore throat) can quickly progress to respiratory distress, mucosal 
bleeding, shock and multiorgan failure1. Overall case fatality rates 
(CFRs) are as high as 29.7% in laboratory-confirmed patients2 
and more than 50% in fetuses3,4. This lethality, coupled with the 
aerosol-based route of exposure and lack of approved therapeutics 
or vaccines, means that LASV is a World Health Organization risk 
group 4 pathogen, biosafety level 4 (BSL-4) agent and substantial 
threat to public health.

LASV is ubiquitous in many regions of West Africa. The main host 
and reservoir of LASV is Mastomys natalensis, a rodent that lives near 
houses in rural villages. Capture surveys have detected LASV in 3.2–52% 
of rodents2,5. LASV is transmitted to humans through aerosolization 
of viral particles from rodent excrement. Consistent with the rodent 
reservoir’s prevalence and virus’ transmissibility, antibody surveys 
indicate that between 8% and 52% of residents in some regions have 
been exposed to LASV6,7, leading to an estimated 100,000–300,000 

infections of LASV annually8. Person-to-person transmission has been 
reported but usually only in nosocomial settings9.

Despite the prevalence of LASV, only hundreds to thousands of 
cases of Lassa fever are diagnosed each year10, suggesting that most 
infections are undocumented and mild. Why severe disease and death 
only occurs in a subset of LASV infections is not clear. Although old 
age11 and pregnancy2,3 are associated with poor Lassa fever outcomes, 
they do not explain all the variability in infection outcome. Variability 
among LASV lineages12 has not been linked to severity of symptoms.

Human genetic variation may contribute to variability in the out-
come of LASV infection. Host genetics has been linked to symptoms 
caused by infection with severe acute respiratory syndrome corona-
virus 2, human immunodeficiency virus (HIV), dengue and hepatitis 
A–C13–15. The link between host genetics and LASV infection is intriguing 
because LASV may have been an important selective force in endemic 
regions, driving variants that protect against Lassa fever to higher 
prevalence. We previously reported a signal of positive selection in a 
Yoruba population from Nigeria, who live in a LASV endemic region, 
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immunoassays can have low sensitivity. As there are no US Food and 
Drug Administration-approved LASV diagnostics20, proven diagnoses 
require viral culture, which is generally not feasible. We anticipated that 
it would be challenging to obtain a sizable enough cohort to carry out a 
Lassa fever genome-wide association study (GWAS) but hypothesized 
that increased power would arise if natural selection for resistance 
to Lassa fever was present. This is because natural selection would 
increase the prevalence of advantageous alleles, over time generat-
ing common resistance alleles. Such highly protective variants might 
be detectable in genetic association studies of modest sample size. 
For instance, the sickle cell allele in haemoglobin is one of the most 
robust signals of genetic resistance to infectious disease and can be 
detected in small samples21,22. We hypothesized that if this was the 
case, a Lassa fever GWAS could elucidate the biological basis of Lassa 
fever resistance.

Beginning in 2008, we established public health and research 
capabilities for Lassa fever in two countries in West Africa. To obtain 
an adequate cohort size, we recruited and genotyped patients with 
Lassa fever and geographically matched individuals who do not have 
LASV symptoms (population controls) during a 7 year period from 
LASV endemic regions of Nigeria and Sierra Leone using an array of 

at a locus overlapping the gene LARGE1 (refs. 16,17) (Fig. 1a). LARGE1 
encodes a protein that glycosylates α-dystroglycan, the primary cel-
lular receptor for LASV18,19. LASV infectivity in vitro depends on the 
level of LARGE1 expression19. Therefore, a variant in the putative region 
under positive selection may have been driven to high allele frequen-
cies by impacting expression levels of LARGE1, thereby reducing the 
risk of severe Lassa fever (Fig. 1b). Given Lassa fever’s lethality among 
diagnosed cases and the high seroprevalence to LASV, it is plausible 
that host variants providing resistance might have an impact on repro-
ductive fitness. In addition, phylogenetic dating indicates that LASV 
has been present for over 1,000 years in Nigeria12, making it feasible 
that the virus might have exerted evolutionary pressure on humans. 
However, no previous studies have systematically assessed the impact 
of host variation in LASV infection.

Despite the clinical importance of Lassa fever, there are practical 
obstacles to studying it in human patients. First, LASV is a BSL-4 patho-
gen endemic in countries that have only recently obtained infrastruc-
ture for safe virus handling. Second, medical infrastructure is lacking 
in the villages where Lassa fever is most common, so most symptomatic 
Lassa fever cases are undocumented. Finally, genetic diversity of LASV 
isolates means that diagnostics based on nucleic acid amplification or 
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Fig. 1 | Overview of hypothesized mechanism of positive selection for 
resistance to Lassa fever mediated by LARGE1. a, Statistical evidence for 
positive selection at the LARGE1 locus, adapted from Andersen et al.17. The y axis 
shows the composite likelihood score which integrates evidence of positive 
selection based on population differentiation (fixation index), long haplotype 

(integrated haplotype score, delta integrated haplotype score, cross-population 
extended haplotype homozygosity) and derived allele frequency. On the figure, 
p refers to the short arm of the chromosome, while q refers to the long arm. See 
Andersen et al.17 for details. b, Hypothesized mechanism by which decreased 
activity of LARGE1 increases resistance to LASV infection and Lassa fever.
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diagnostic tests to capture the broadest possible set of cases while 
minimizing false positives. We tested for genome-wide association 
with Lassa fever susceptibility and fatal outcomes, with sub-analyses 
specifically considering variation at LARGE1 and the human leukocyte 
antigen (HLA) loci.

GWAS recruitment and clinical characterization
We recruited and genotyped 411 people with LASV and 1,187 controls 
from Nigeria and 122 people with LASV and 799 controls from Sierra 
Leone (Extended Data Table 1 and Extended Data Fig. 1).

We used the standard-of-care assays for case definition at each 
recruitment site and also used next-generation sequencing to detect 
additional people with LASV missed by traditional diagnostics (Sup-
plementary Note and Extended Data Table 2).

All sequenced LASV genomes from Nigeria were clade II or III, 
and those from Sierra Leone were clade IV, matching the expected 
distributions23. Furthermore, all but one of the Nigeria genomes 
matched the expected phylogeographic distribution of clade III sam-
ples deriving from northern Nigeria and clade II samples deriving from  
southern Nigeria24.

As we recruited population controls from Lassa fever endemic 
villages, we suspected that many controls were exposed to LASV in 
their lifetimes but never developed clinically relevant Lassa fever, 
thus increasing their likelihood of harbouring protective genetic 
variation. We used enzyme-linked immunosorbent assays (ELISAs) 
to measure immunoglobulin G antibodies against LASV for 751 and 
589 of the controls from Nigeria and Sierra Leone, respectively (Sup-
plementary Note). We found that 25.9% and 49.6% of the Nigeria and 
Sierra Leone controls were seropositive, respectively (compared to 
0/117 of United States-based controls25), consistent with the upper 
end of previous seroprevalence surveys in these countries6. Further-
more, we found that seropositivity was associated with older age 

(rank-sum test P = 0.0022 for Nigeria and 0.00053 for Sierra Leone) 
and increased gradually with age (Fig. 2a), suggesting continuous 
lifetime exposure to LASV.

We tested whether demographic variables were associated with 
Lassa fever susceptibility and fatal outcomes. Previous studies reported 
higher proportions of women and girls with Lassa fever26–32, suggesting 
increased susceptibility to LASV or exposure to LASV among women32,33. 
Consistent with this, we found that women and girls are significantly 
overrepresented within our Nigeria cases (242/411 or 58.9%, binomial 
test P = 0.0003). However, we did not find significant sex differences 
in the Sierra Leone cases (50/122 or 41.0%, P = 0.057). We found that 
people with LASV were younger than controls in both Nigeria and 
Sierra Leone (rank-sum test P = 0.0010 and 2.15 × 10−17, respectively) 
(Extended Data Fig. 2a). CFR was estimated to be 35.3% and 64.8% in our 
Nigeria and Sierra Leone cases, respectively, consistent with previous 
estimates in these countries2 (Extended Data Table 1).

We tested the association between symptoms and age (Extended 
Data Table 3) and found that younger patients in both Nigeria and Sierra 
Leone were more likely to present with vomiting (P = 0.016 and 0.012, 
respectively) and cough (P = 0.08 and 0.001, respectively) than older 
patients. We also observed a trend toward higher probability of fatal 
outcome in older people with LASV, but this was not significant (P = 0.11 
and 0.17, respectively, in Nigeria and Sierra Leone).

GWAS of Lassa fever susceptibility and clinical 
outcome
Owing to the prolonged, interrupted recruitment over 7 years and 
changes in genotyping platforms over the time frame of recruitment, 
samples were genotyped on three different arrays: H3Africa, Omni 2.5 M 
and Omni 5 M (Extended Data Table 2). We corrected for array-derived 
batch effects before joint imputation across all arrays (Supplementary 
Note). This yielded a pre-imputation set of 1,453,101 genotyped variants 
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Fig. 2 | GWAS of Lassa fever clinical outcome. a, Immunoglobulin G 
seropositivity rate in Nigerian (NG) and Sierra Leonean (SL) controls stratified 
by age. Error bars represent 95% bootstrap confidence intervals. NG: N of 24 in 
0–19 years, 424 in 20–39 years, 269 in 40–59 years and 34 in 60+ years. SL: N of 33 
in 0–19 years, 282 in 20–39 years, 191 in 40–59 years and 83 in 60+ years.  

b–d, Manhattan plots showing the −log P value for each genomic variant for the 
Lassa fever outcome association for Nigeria (b), Sierra Leone (c) and meta-
analysis (d). P values for b and c are based on SAIGE, while P values for d are 
derived from meta-analysis (METAL) of P values shown in b and c.
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and a final imputed set of 12,783,971 variants in Nigeria and 12,522,562 
variants in Sierra Leone.

We used generalized linear mixed models as implemented in 
saddlepoint-approximated score tests (SAIGE)34 to account for relat-
edness and population stratification in our dataset (Methods). Mixed 
models analysis is important for this study because the dataset con-
tained many first-degree relatives. Six hundred and sixteen (38%) and 
251 (27%) individuals in the Nigerian and Sierra Leone cohorts had a 
first-degree relative, respectively (Extended Data Fig. 2b). In addition, 
principal component analysis showed evidence of stratification even 
after removing closely related individuals in our cohort (Extended Data 
Fig. 2c); we therefore included principal components (PCs) as fixed 
effects, which has been shown to control for confounding due to popula-
tion stratification35. We used a genome-wide significance threshold of 
3.24 × 10−8 (previously reported to control for false positives in African 
populations36). Quantile–quantile plots did not show any evidence of 
test-statistic inflation, indicating that our statistical controls accounted 
for dominant confounding variables (Extended Data Fig. 2d).

A GWAS of susceptibility to Lassa fever infection for all individuals 
in our study did not identify any variants that reached genome-wide 
significance in either cohort. However, two variants on chromosome 
17 showed a trend toward significance in the Sierra Leone cohort  
(Table 1 and Extended Data Fig. 2e). rs73397758 (P = 5.5 × 10−8, odds 
ratio (OR) = 9.16) is ~350 KB (kilobase pairs) downstream of the gene 
CASC17, a long non-coding RNA named for a genetic association with 
prostate cancer37, and 570 KB upstream of KCNJ2, a potassium inwardly 
rectifying channel38. rs143130878 (P = 1.1 × 10−7, OR = 6.87) resides 
62,472 base pairs downstream of the gene CCT6B39, which is a member 
of the molecular chaperone (TRiC) family that has been shown to regu-
late the replication of arenaviruses, including LASV40. Neither variant 
was significantly associated with susceptibility in the Nigeria cohort 
(P = 0.58 and P = 0.64, respectively).

The most significant variant in a meta-analysis of the two GWAS 
cohorts was rs114992845 in an intron of CNTNAP2 (meta-analysis 
P = 1.2 × 10−7; Nigeria OR = 9.19, Sierra Leone OR = 4.77) (Table 1). CNT-
NAP2 is a member of the neurexin family, many members of which 
encode proteins that bind to α-dystroglycan, the cellular receptor for 
LASV41. Furthermore, loss-of-function mutations in the gene CNTNAP2 
have been associated with recurrent infections42, although the underly-
ing mechanism remains unknown. All three variants that were trending 
toward significance in the susceptibility GWAS are of low frequency 
(Table 1) and will require larger sample sizes for validation.

A GWAS of fatal outcomes in Lassa fever cases using the same 
strategy described above did identify genome-wide significant associa-
tions (Extended Data Fig. 3a). We did not observe evidence of popula-
tion stratification or test statistic inflation (Supplementary Fig. 3a,b). 
We identified a significant association with rs9870087 in the Nige-
ria cohort, falling within an intron of the gene GRM7 (P = 1.54 × 10−9, 
OR = 15.4) (Table 2 and Fig. 2b). The protein encoded by GRM7 is a glu-
tamate metabotropic receptor active throughout the central nervous 
system43. While no direct role of this receptor is known in viral infection, 

GRM2, another member of this family, has been previously linked to 
severe acute respiratory syndrome coronavirus 244 and rabies45 viral 
entry. A recent GRM7 knock-out mouse implicated this gene in neuroim-
mune signalling in anaphylaxis46. Furthermore, GRM7 has an important 
role in maintenance of hearing by inner-ear hair cells47, and hearing loss 
is a symptom of Lassa fever48. We did not identify any genome-wide 
significant associations in the Sierra Leone cohort (Fig. 2c).

We also carried out a meta-analysis of fatal outcomes in the Nigeria 
and Sierra Leone cohorts which identified a genome-wide signifi-
cant association with rs73404538 (meta-analysis P = 1.9 × 10−9; Nigeria 
OR = 0.358, Sierra Leone OR = 0.389) (Fig. 2d and Extended Data Table 4).  
This variant falls 16,453 base pairs downstream of the 3′ untranslated 
region of LIF, which encodes an interleukin 6 class cytokine49 that has 
been associated with several viral infections. We further note that 
rs73404538 is nominally significant in the Sierra Leone susceptibility 
GWAS (P = 0.039, OR = 0.71) and in a meta-analysis of the Nigeria and 
Sierra Leone susceptibility GWASs (P = 0.021) with a concordant direc-
tion of effect (Extended Data Table 4). This suggests that in addition to 
increasing the lethality of Lassa fever, rs73404538 may also increase 
the probability of contracting clinically detected Lassa fever.

We did not include age as a covariate in our primary analysis due 
to missing data for many participants (2.4% of Nigeria cases and 25.5% 
of Sierra Leone controls), but we did so in a secondary analysis. While 
the P values for the susceptibility lead variants decrease by up to 1 order 
of magnitude, consistent with a loss of power from the decreased sam-
ple size, the rs73404538 variant downstream of LIF actually becomes 
genome-wide significant in the Nigeria cohort (P = 2.2 × 10−8, OR = 0.36) 
and more significant in the meta-analysis (P = 8.0 × 10−10) providing 
further support for this association (Extended Data Fig. 3c).

As each of the candidate GWAS loci described above contains 
multiple linked non-coding genetic variants (Extended Data Fig. 4a,b), 
we used a massively parallel reporter assay (MPRA) to identify which 
variants are most likely to be functional. MPRA50 identifies potential 
regulatory variants by testing the reference and alternate alleles of 
thousands of variants in parallel for their ability to impact expression 
of a plasmid-based reporter (Supplementary Note). We carried out 
MPRA in K562 and HepG2 cells for loci containing the most significant 
variants in the susceptibility and fatal outcome GWASs (Supplementary 
Tables 3–5).

We identified potential regulatory variants in many of our top 
GWAS loci. For the CASC17 locus, we find that the only tested variant to 
show regulatory activity is rs112446079 in K562 cells (log2 skew = −0.64, 
q = 0.031), the second most strongly associated variant in the region 
(Extended Data Fig. 4c, left). Similarly, for the CNTNAP2 locus, the 
seventh most strongly associated variant in the region, rs150484921, 
showed regulatory activity by MPRA (log2 skew = −0.65, q = 0.011), 
but the lead variant did not (Extended Data Fig. 4c, right). Several 
variants were associated with the second Sierra Leone peak near 
CCT6B, the most significant of which in the GWAS was rs116948215 
(log2 skew = −0.98, q = 1.94 × 10−6). This latter single-nucleotide poly-
morphism (SNP) is active in the MPRA in HepG2 cells as well as K562s 

Table 1 | Description of lead variants for the susceptibility GWAS analysis

Lead SNP

Lead SNP Chromosome Position 
(hg19)

Nearest 
gene

Nigeria 
OR

Nigeria 
95% CI

Nigeria  
P value

Nigeria 
MAF 
(%)

Sierra 
Leone 
OR

Sierra 
Leone 95% 
CI

Sierra 
Leone  
P value

Sierra 
Leone 
MAF 
(%)

Meta-analysis 
P value

rs114992845 7 146356694 CNTNAP2 9.19 [3.5, 23.9] 2.7 × 10−6 1.21 4.77 [1.3, 17.8] 0.010 1.86 1.2 × 10−7

rs143130878 17 33192408 CCT6B 1.20 [0.6, 2.6] 0.64 3.38 6.87 [3.3, 14.2] 1.1 × 10−7 2.74 3.3 × 10−4

rs73397758 17 68745251 CASC17 0.84 [0.5, 1.5] 0.58 6.28 9.16 [4.0, 20.8] 5.5 × 10−8 2.42 4.8 × 10−3

Includes the most significant variant in the meta-analysis of both cohorts and the two most significant variants in the Sierra Leone analysis. Country-specific P values are based on SAIGE, while 
meta-analysis P values are derived from meta-analysis (METAL) of P values generated from each cohort. 95% CI, 95% confidence interval for the OR; MAF, minor allele frequency.
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Table 2 | Description of lead variants for the fatal outcome GWAS analysis

Lead SNP

Lead SNP Chromosome Position 
(hg19)

Nearest 
gene

Nigeria 
OR

Nigeria 
95% CI

Nigeria  
P value

Nigeria 
MAF 
(%)

Sierra 
Leone 
OR

Sierra Leone 
95% CI

Sierra 
Leone  
P value

Sierra 
Leone 
MAF 
(%)

Meta-analysis 
P value

rs73404538 22 30619983 LIF 0.358 [0.2, 0.5] 1.1 × 10−7 47.8 0.389 [0.19, 0.79] 4.7 × 10−3 35.8 1.9 × 10−9

rs9870087 3 7330265 GRM7 15.4 [6.2, 37.9] 1.5 × 10−9 4.73 0.642a [0.1, 2.8]a 0.55a 5.02a 1.1 × 10−6a

Includes the most significant variant per genomic locus containing at least one genome-wide significant association (including in meta-analysis). P values are based on SAIGE, while 
meta-analysis P values are derived from meta-analysis (METAL) of P values generated from each cohort. ars9870087 was excluded from the Sierra Leone GWAS due to low minor allele count 
but is included here for completeness.
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Fig. 3 | Association of the LARGE-LRH haplotype with susceptibility to Lassa 
fever. a, K-means clustering of haplotypes in the LARGE1 region. Rows are phased 
haplotypes; columns are individual variants with reference alleles shown in 
purple, alternate alleles shown in yellow and K-means clusters separated.  
b, Scatter plot of q values for allelic skew in the MPRA, coloured by the absolute 
value of the Pearson correlation with the haplotype. c,d, Scatter plot of GWAS 
association P values over the LARGE1 region for Nigeria (c) and Sierra Leone 
(d) coloured by Pearson correlation of the protective allele in the GWAS with 

the LARGE-LRH. P values in c and d are based on SAIGE. e, Contingency table 
of LARGE-LRH genotype counts in cases and controls for Nigeria (NG, top) and 
Sierra Leone (SL, bottom). f, Ecologically estimated Lassa fever prevalence from 
Fichet-Calvet et al.70 with pie charts indicating the frequency of the LARGE1 
haplotype in 1000 Genomes populations (YRI, Yoruba; ESN, Esan; MSL, Mende; 
LWK, Luhya; GWD, Gambian Mandinka)51 or our GWAS cohorts (NG, SL). Stars 
indicate towns, villages or hospitals that encountered outbreaks as detailed in 
Fichet-Calvet et al.70.
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suggesting a broader regulatory effect across cell types (Extended Data 
Fig. 4c, middle). For the outcome analysis, we identified one potential 
regulatory variant at the GRM7 locus, rs114312118, which is active spe-
cifically in HepG2s (log2 skew = 0.87, q = 0.0077) (Extended Data Fig. 4f).

Analysis of a positive selection signal overlapping 
LARGE1
Next, we tested whether variation around the gene LARGE1, a required 
LASV entry factor, is associated with resistance to Lassa fever. Previous 
studies identified a long-range haplotype at this locus, that is, multi-
ple genetic variants located up to 500 KB apart that remain in tight 
LD. The presence of such an extended haplotype suggests that one or 
more variants in the locus provides a fitness advantage, causing it to 
spread to high allele frequency in the population faster than genetic 
recombination would break down the haplotype16,17.

Although no individual variants on chromosome 22 reached 
genome-wide significance in the GWAS, we examined the long-range 
haplotype overlapping the LARGE1 locus as a single entity to further 
characterize its correlation with Lassa fever phenotypes. We used 
K-means clustering (with K = 2) of phased haplotypes and found a 
dominant haplotype with long-range LD (Fig. 3a and Methods). We 
label this haplotype ‘LARGE1 long-range haplotype’ or LARGE-LRH, 
for short. LARGE-LRH was well tagged by the lead variants identified in 
previous positive selection scans, for example, rs5999077, rs1013337 
and rs1573662, identified in ref. 16 (D′ values of 0.957, 0.773 and 0.735). 
LARGE-LRH was present at 23.9% and 16.9% allele frequency in the 
Nigeria and Sierra Leone cohorts, respectively.

As LARGE-LRH comprises 96 tightly linked variants with Pearson 
correlation above 0.6 using the K-means annotation, we applied MPRA 
to zoom into potentially causal variants underlying the signal of posi-
tive selection. We tested a library of 5,286 oligonucleotides (of 200 base 
pair length) centred on different alleles of 1,674 variants in the LARGE1 
region for regulatory function using MPRA (Supplementary Note)  
(Fig. 3b). Fifty-four of the 1,674 tested variants (3.23%) had signifi-
cant skew (false discovery rate (FDR)-adjusted P < 0.05) between the 
reference and alternate allele. Of these, five (rs738948, rs16993101, 
rs738949, rs58484073 and rs9607079) had an FDR-adjusted P < 0.01 
and were linked to the haplotype with a Pearson correlation >0.6. This 
analysis shows that these variants might regulate gene expression and 
are candidates for positive selection effects in human populations.

We next evaluated whether any variants in linkage with LARGE-LRH 
were associated with susceptibility to Lassa fever (Fig. 3c,d). The 
haplotype-linked variant with the strongest association with Lassa 
fever susceptibility in the Nigeria cohort was rs12053767 (P = 0.011, 
haplotype Pearson correlation of 0.57). However, this variant was not 
significantly skewed by MPRA (q = 0.998) and was not significantly 
associated with Lassa fever in the Sierra Leone cohort (P = 0.25). The 
haplotype-linked variant with the strongest association to Lassa fever 
susceptibility in the Sierra Leone cohort was rs5754747 (P = 0.0030, 
haplotype Pearson correlation of 0.46), but this variant was also not 
significant in the Nigeria cohort (P = 0.988) or significantly skewed by 
MPRA (q = 0.26).

We reasoned that LARGE-LRH, taken together as a single allele, 
could yield a stronger signal than individual SNPs if the causal vari-
ant is not genotyped or if the causal mechanism involves an interac-
tion among multiple variants on the haplotype. We tested whether 
LARGE-LRH is associated with Lassa fever using the same model that we 
used in the primary GWAS and found that LARGE-LRH was significantly 
associated with Lassa fever susceptibility in Nigeria (P = 0.0492) but not 
in Sierra Leone (P = 0.412). The overall allele frequency of LARGE-LRH 
was slightly higher in controls than in people with LASV (Nigeria, 24.6% 
allele frequency in controls versus 22.1% in people with LASV; Sierra 
Leone, 17.0% versus 16.0%), consistent with our hypothesized resistance 
model (Fig. 3e). We note that the association with LARGE-LRH is mainly 
driven by individuals recruited in the first cohort (Nigeria 2011–2014 

recruitment P = 0.049, Nigeria 2016–2018 recruitment P = 0.98) and 
that there is a trend toward association in the Sierra Leone cohort dur-
ing that time period (Sierra Leone 2011–2014 recruitment P = 0.11). As 
there were no controls recruited in Sierra Leone in the second cohort, 
we do not have a 2016–2018 comparison for it. We were surprised that 
people with LASV recruited in 2016–2018 did not have a lower frequency 
of LARGE-LRH (Extended Data Fig. 5), so further study is necessary to 
harmonize these conflicting observations.

To further test the link between the selection signal at LARGE1 and 
Lassa fever, we used 1000 Genomes Project (1KGP) data to test whether 
LARGE-LRH was present at higher frequency in populations living in 
LASV endemic regions. We quantified the haplotype frequency of 
individuals from 26 populations sequenced by the 1KGP51, including 
several African populations in LASV endemic regions (Esan, Yoruba and 
Mende) (Fig. 3f). We identified tag SNPs linked to the LARGE-LRH with 
Pearson correlation >0.92. We then analysed phased 1KGP sequence 
data and called the LARGE-LRH if three or more of the haplotype-linked 
alleles were present (Methods). The 1KGP cohort contained 27 individu-
als homozygous for the LARGE-LRH, 198 heterozygous individuals and 
2,279 carrying 0 copies. LARGE-LRH was absent from all European 
and Asian ancestry populations tested and was present at the highest 
frequency in populations in LASV endemic regions (Yoruba 30.5%, 
Esan 23.2% and Mende 20.0%) (Fig. 3f). It was also present in Luhya 
(16.7%) and Mandinka (10.2%), African populations, outside of the 
LASV endemic zone (Fig. 3f). Mandinka are geographically close to the 
Lassa fever endemic region, and the Luhya are historically tied to West 
Africa through the Bantu expansion, so the elevated allele frequencies 
could be explained by migration after the putative selective sweep or 
by a changing geographic distribution of LASV.

Imputation and association analysis of HLA 
alleles
We tested for associations between Lassa fever and genetic variation in 
the HLA region. HLA genes encode polymorphic proteins that present 
antigens to T cells and have been associated with many infectious dis-
ease phenotypes15. While we did not identify genome-wide significant 
associations with SNPs in the HLA genes, HLA-specific imputation 
approaches are frequently required to identify HLA associations52.

We imputed four-digit HLA alleles, which are complete amino 
acid sequences, and additional sequencing-based HLA typing of eight 
classical HLA genes to serve as ‘ground truth’ HLA calls to evaluate 
imputation accuracy (Methods). Sequencing-based typing of the eight 
classical HLA genes in 297 individuals in our Sierra Leone cohort iden-
tified 41 novel HLA alleles that were not present in the International 
Immunogenetics database (Extended Data Table 5). Nine of the novel 
alleles were from HLA class I loci, while 32 were HLA class II, with DQB1 
and DPA1 having the most novel alleles with 11 and 9, respectively. 
Notably, a novel allele at 5% allele frequency, DPA1*03:01@2, disrupts 
the start codon (ATG to ACG).

We compared imputation accuracy of the four-digit HLA calls with 
sequencing-based ground truth sets from our Sierra Leone cohort, 
as well as Esan and Mende individuals from 1KGP. Imputation accura-
cies compared to the sequencing-based calls in Sierra Leone ranged 
from 89.2% to 97.6% (Fig. 4a). An additional 76 and 84 Mende and Esan 
individuals from our Sierra Leone and Nigeria cohorts, respectively, 
were typed for HLA genes A, B, C, DQB1 and DRB1 as part of 1KGP53. 
For these groups, imputation accuracy ranged from 91.4% to 99.2%  
(Fig. 4a). These comparisons showed adequate imputation of HLA 
alleles from SNP genotypes for our cohort.

We examined association of the four-digit HLA alleles with Lassa 
fever susceptibility phenotypes. No HLA alleles had a significant asso-
ciation with Lassa fever after correcting for multiple hypothesis testing 
(Fig. 4b). The allele with the strongest evidence of association consid-
ering both cohorts was DRB1*15:03, which had a P value of 0.089 in 
the Nigeria cohort and 0.064 in the Sierra Leone cohort, resulting in 
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a meta-analysis P value of 0.013. B*15:16 and C*14:02 yielded P values 
of 0.0124 and 0.0259 in the Nigeria cohort, and DPA1*02:01 yielded a  
P value of 0.027 in the Sierra Leone cohort. After correcting for multiple 
hypothesis testing over all HLA tests, the most significant meta-analysis 
q value was 0.587 (Fig. 4b). Similarly, we did not find any associations 
for fatal outcomes after correcting for multiple hypothesis testing 
(q < 0.05). We tested the 41 novel HLA alleles that were discovered in 
our Sierra Leone cohort in a similar analysis (Methods), but none were 
significant.

Discussion
Over a 10 year period we completed the first GWAS of infection with 
a risk group 4 pathogen reported to date. Our cohorts were recruited 
in remote parts of West Africa where Lassa fever is most prevalent. 
They reflected the paradoxical clinical heterogeneity of Lassa fever, 
with high fatality rates among people with LASV and high LASV sero-
prevalence among population controls. We find that an intronic vari-
ant within GRM7 and a variant downstream of LIF are significantly 
associated with Lassa fever in the Nigeria cohorts and meta-analysis 
of the two cohorts, respectively. We identified candidate variants 
that approach, but do not reach, genome-wide significance in sus-
ceptibility analyses.

Several of the loci identified in our study contain genes with poten-
tial connections to Lassa fever biology. LIF encodes an interleukin 6 
family cytokine that was previously shown to protect against lung 
injury in mouse models of respiratory syncytial virus infection54 and 
to be up-regulated in acute HIV infection55 and meningococcemia56. 
Altered regulation of this pleiotropic cytokine due to host variation 
could impact Lassa fever severity, giving rise to the observed asso-
ciation with fatality. GRM7 may function in viral entry akin to GRM2 in 
coronavirus disease 2019 or could be involved in immune activation 
as was seen in a recent knock-out model of anaphylaxis46. In addition, 
GRM7 plays an important role in maintenance of hearing by inner-ear 
hair cells47; interestingly, hearing loss is a notable symptom of Lassa 
fever48. MPRA of the significant GWAS loci pinpointed the specific 
variants most likely to exert regulatory effects in the genome. None of 
these variants co-localized with expression quantitative trait loci in the 

Genotype-Tissue Expression dataset, but this might reflect the relative 
lack of African ancestry individuals in this resource57.

The variants reported here have ORs ranging from 6.87 to 9.19 for 
the susceptibility GWAS and as high as 15.4 for the outcome analyses 
(Tables 1 and 2). Intriguingly, the associated risk alleles are mostly 
uncommon, ranging from 1% to 5% frequency in our cohorts. Given 
their low frequency, they might be expected to have larger biological 
effects than what is typically seen for common variants58. Furthermore, 
the low allele frequency may reflect strong purifying selection, with the 
ubiquitous virus and high CFR purifying the risk allele from the popula-
tion. Alternatively, the large effect sizes might reflect ‘winner’s curse’, 
in which only reporting variants that pass, or approach, genome-wide 
significance results in systematic upward bias of reported effect sizes in 
GWAS59. Larger replication studies and further biological characteriza-
tion will be needed to clarify these signals.

We used our data to test a hypothesis that positive selection for 
genetic variation at the LARGE1 locus provides protection from Lassa 
fever6,16,17. We found that a haplotype with long-range LD, indicative of 
recent positive selection, is nominally associated with reduced likeli-
hood of Lassa fever in the Nigeria cohort but not in the Sierra Leone 
cohort. We reported promising support for this hypothesis in the 
2011–2014 cohort, but this did not replicate in the subsequent recruit-
ment from 2016–2018 (Extended Data Fig. 5). The discrepancy between 
cohorts might represent false positives in the first, power-limited, study 
or underlying differences between these temporally separated cohorts. 
It is noteworthy that, after the Ebola outbreak from 2013 to 2016, the 
number of suspected cases at Irrua Specialist Teaching Hospital (ISTH) 
surged24. Genetic epidemiology did not find evidence that a particular 
viral variant or extensive human-to-human transmission underpinned 
the surge, suggesting that it may have been driven by increased surveil-
lance. Larger cohorts and deeper phenotypic characterization will 
be required to evaluate the hypothesis of LARGE1 mediated genetic 
resistance to Lassa fever susceptibility.

We faced four major obstacles that will inform the design of similar 
studies: small sample sizes, uncertainty in case and control definitions, 
impact of environmental variables and insufficient characterization of 
genetic diversity in African populations.

a

b

A B C
DPA

1
DPB1

DQA1
DQB1

DRB1

HLA gene

0.6

0.7

0.8

0.9

1.0

Im
pu

ta
tio

n 
ac

cu
ra

cy

Sample set
Sierra Leone
1000G Esan
1000G Mende

HLA
allele

Allele
frequency OR P value Allele

frequency OR P value P value q value

B*15:16 0.0266 3.021 0.0124 0.0181 1.776 0.364 0.0110 0.587
DRB1*15:03 0.244 1.320 0.0895 0.0224 2.598 0.0638 0.0134 0.587
DPA1*02:01 0.354 1.204 0.194 0.446 1.452 0.0268 0.0176 0.587
C*14:02 0.0186 3.215 0.0259 0.0196 1.666 0.402 0.0226 0.592
B*35:01 0.0884 0.671 0.108 0.144 0.742 0.212 0.0418 0.693

Meta-analysisSierra LeoneNigeria

Fig. 4 | Association of HLA variation with Lassa fever susceptibility.  
a, Imputation accuracy of four-digit HLA calls compared to sequencing-based 
ground truth sets from our Sierra Leone cohort, as well as Esan and Mende 
individuals from 1000 Genomes. b, Table of HLA alleles with the strongest 

association with Lassa fever susceptibility, ordered by meta-analysis of the NG 
and SL cohorts. P values are based on SAIGE, while meta-analysis P values are 
derived from meta-analysis (METAL) of P values generated from each cohort. ORs 
are computed from Firth logistic regression.
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Achieving large sample sizes for human studies of BSL-4 pathogens 
is challenging. Very few cases are documented annually, for example, 
less than 1,000 in Nigeria, the most populous country in the LASV 
endemic region10. Lassa fever is prevalent in rural areas that are far 
from diagnostic centres, further hampering recruitment60. Few facili-
ties have diagnostic capacity for LASV infection, and field-deployable 
LASV tests are not widely available. Therefore, only a fraction of Lassa 
fever cases are identified, most likely those in which extreme dis-
ease presentations motivated the patient to seek medical attention.  
Some practical investments that would help increase the detection 
and treatment of LASV infection include diagnostic centres in rural 
areas, field-deployable, point-of-care diagnostics, and integrated 
health systems.

Defining Lassa fever cases and controls remains difficult, owing to 
insufficient diagnostic assays and LASV’s genetic diversity. These fac-
tors may result in false negatives as well as false positives that reduce 
power. We mitigated these limitations by using viral sequencing to 
supplement diagnosis at both sites. Our study also relied on popula-
tion controls with unknown prior exposure to LASV. We used serology 
to characterize prior exposure but could not test every control in our 
cohort. Furthermore, interpretation of serology data is challenging as 
asymptomatic infections may not lead to sustained seropositivity (lead-
ing to false negatives) or could reflect the presence of undocumented 
Lassa fever in the past rather than asymptomatic illness. In any of these 
scenarios, the controls would be expected to carry the same susceptibil-
ity alleles as the people with LASV, reducing power to detect associa-
tions. Questionnaires to elicit detailed disease histories coupled with 
deeper serological characterization may help to distinguish individuals 
with previous Lassa fever from those with asymptomatic infection.

Viral genetic diversity, previous infections and co-infections, 
patient comorbidities and other health factors can further reduce 
GWAS power. LASV has up to 27% nucleotide diversity such that the 
specific infecting viral sequence could greatly impact outcomes. More-
over, the lineages in Nigeria and Sierra Leone are so divergent that they 
could potentially have different mechanisms of interaction with the 
host. In addition, previous infections with other endemic pathogens 
or co-infections with other pathogens could be a driver of observed 
symptoms and disease outcomes61. In future studies, metagenomic 
sequencing could define the genome of the infecting LASV strain while 
identifying the presence of co-infections, allowing these factors to be 
accounted for in the association model.

African populations are genetically diverse, with low levels of 
LD, and are under-studied, posing a challenge to GWAS of infectious 
diseases present mainly in Africa62. This issue was directly illustrated in 
our study; our relatively small HLA sequencing cohort of 297 individu-
als nevertheless identified 41 novel alleles. GWAS relies on imputing 
causal variants based on a relatively small number of variants included 
on the genotyping array. Accurate imputation requires the existence 
of genotyping arrays containing representative variation from the 
population of interest and large whole-genome sequencing reference 
panels, both of which are deficient for African populations. Reduced 
imputation accuracy can dramatically reduce power, making studies 
such as this one more challenging. Continuing efforts to improve our 
understanding of genetic variation in African populations will allow 
further insights into potential links between genetics and disease.

In summary, our work paves the way for follow-up studies on Lassa 
fever and other group 4 microbial pathogens and has contributed to an 
improved genetic data resource for African populations.

Methods
Institutional review board ethical review and approval
This work was approved by the following institutional review boards 
and local ethics committees: Nigerian National Health Research Ethics 
Committee and ISTH (ISTH/HREC/20170915/22), Sierra Leone Ethics 
and Scientific Review Committee (070716), Tulane University Human 

Research Protections Office (10-191330) and Harvard University Area 
Committee on the Use of Human Subjects (19-0023). Enrolment proce-
dures and sampling efforts were carried out at Irrua Specialist Teaching 
Hospital (ISTH), Kenema Government Hospital (KGH) (IRB 070716) and 
their surrounding communities with participant consent or through 
a waiver of consent granted by the appropriate institutional review 
board/local ethics committee. Some samples shared with the study 
collaboration include those stored at the respective hospitals as clinical 
excess or approved for secondary use.

Lassa fever case definition and recruitment
ISTH, Nigeria. We recruited people with Lassa fever at ISTH between 
2011 and 2014 and between 2016 and 2018 with a gap from 2014 to 
2016 due to the Ebola outbreak in West Africa that temporarily halted 
research operations. We performed molecular diagnostic testing for 
all individuals suspected to have LASV who met clinical diagnostic 
criteria for Lassa fever including fever >38 °C for less than 3 weeks, 
absence of signs of local inflammation, absence of clinical response 
to anti-malarials and additional major and minor signs63. Individuals 
suspected to have LASV who were positive by molecular diagnostic 
testing were recruited to the study following informed consent.

KGH, Sierra Leone. People with Lassa fever were recruited at KGH 
between 2011 and 2018 with a gap from 2015 to 2016 due to the Ebola 
outbreak in West Africa. Individuals suspected to have LASV included 
those who met clinical diagnostic criteria for Lassa fever63 and were 
positive by either ELISA for a LASV antigen or immunoglobulin M anti-
body against LASV25,64. We performed virus sequencing from a subset 
of enrolled people with LASV12. We only included data from individuals 
suspected to have LASV who were either antigen-ELISA positive or viral 
sequencing positive with reads per kilobase million of >1 in the GWAS.

Population control recruitment. Study staff at ISTH and KGH recruited 
population controls through outreach efforts to villages with a recent 
history of Lassa fever cases. Village controls (Supplementary Table 2) 
were healthy individuals who were recruited from the same household 
and/or village as people with LASV, prioritizing unrelated individuals 
where possible. Trio controls (Supplementary Table 2) were healthy 
families of mother, father and child from the Esan population in Nigeria 
and the Mende population in Sierra Leone who were recruited jointly 
with phase 3 of the 1KGP51. The informed consent criteria for this project 
were developed by the Samples and Ethical, Legal and Social Implica-
tions Group of the National Human Genome Research Institute51 and 
extends to the analyses we carried out in this study.

See Supplementary Note for more details about real-time quantita-
tive PCR, sequencing and ELISA assays.

DNA extraction and genotyping
For all consenting study participants, we extracted buffy coats from 
the diagnostic blood draw after they were spun at 1,500 g for 10 min. 
We collected the buffy coat into a 1.5 ml tube, extracted DNA using the 
Qiagen DNAeasy kit following manufacturer’s instructions and shipped 
DNA samples to the Broad Institute.

For samples collected between 2011 and 2014, genotyping was 
performed at the Broad Institute’s Genomics Platform on either the 
Infinium Omni 2.5 M or the Omni 5 M arrays. For samples collected 
after 2015, genotyping was performed at Illumina in San Diego on the 
H3Africa array.

Variant preprocessing and genome-wide association
See Supplementary Note for detailed description of variant preprocess-
ing, principal component analyses, GWAS analysis and meta-analysis. 
Briefly, we first filtered variants that showed significantly different 
calls across genotyping arrays. We then merged the remaining samples 
into a single VCF file and ran imputation using the Sanger Imputation 
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Service65 and EAGLE2 v2.0.5 for phasing66 using the African Genome 
Resources reference panel.

We conducted all genetic association tests using mixed models 
logistic regression as implemented in version 1.2.0 of SAIGE34 using the 
leave-one-chromosome-out option. We used genotyped variants that 
passed quality control filters to compute PCs and the genetic relatedness 
matrix. We used sex, array (H3Africa versus Infinium Omni) and PCs as 
covariates. We used METAL (version corresponding to 25 March 2011 
release)67 to meta-analyse the results of the Nigeria and Sierra Leone 
cohorts using the default option of weighting each cohort by sample size.

MPRA
See Supplementary Note for details on MPRA methods.

LARGE1 haplotype analysis
To define the LARGE-LRH, we extracted phased imputed genotype data 
from our cohort for the region on chromosome 22 between base pairs 
33,870,000 and 34,470,000 in GRCh37, which corresponds to the previ-
ously defined region of the haplotype17. We then filtered out variants 
with minor allele frequency below 0.05 and clustered the correspond-
ing haplotypes using K-means as implemented in Scikit-learn version 
0.21.3 with K = 2. We identified individuals who were homozygous 
(coded as 2), heterozygous (coded as 1) or had 0 copies of the haplotype 
(coded as 0) and tested for association with Lassa fever phenotypes 
using SAIGE as described above and in the Supplementary Note.

To tag individuals from the 1KGP dataset who were carrying the 
LARGE-LRH, we identified the five SNPs that were most correlated 
with the clustering-defined haplotype in our dataset based on Pearson 
correlation. These were rs59015613, rs16993014, rs4525791, rs8135517 
and rs59594190, all of which had a Pearson correlation >0.92 with the 
LARGE-LRH. We then used the phased 1KGP data to label haplotypes 
as the LARGE-LRH if three or more of the linked tag SNPs were present. 
The results were unchanged if we required only 2 or more linked SNPs 
to be present, and requiring 5/5 tag SNPs to be present only decreased 
the number of called haplotypes called from 252 to 250.

HLA sequencing, imputation and association analysis
Sequencing-based HLA typing. We performed sequencing-based HLA 
typing on samples from 297 Sierra Leone study participants. We gener-
ated sequencing libraries with the TruSight HLA v2 Sequencing Panel, 
following manufacturer’s instructions, and sequenced the samples on 
Illumina Miseq instruments at either the Broad Institute, Boston, MA, 
or Scripps Institute, La Jolla, CA. We assigned HLA calls from the raw 
sequencing reads using the Assign 2.0 TruSight HLA Analysis Software.

HLA imputation. We developed an HLA imputation panel from 3,608 
African Americans68. This consisted of sequencing-based HLA calls for 
the HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1 
and HLA-DRB1 genes, as well as SNP genotyping data from either the 
Affymetric Genome-Wide Human SNP Array 6.0 (2259) or the Infinium 
Omni 2.5 M array (1349). We imputed SNPs on chromosome 6 for these 
individuals using the same pipeline as for our GWAS cohort (Sanger 
Imputation Service with Eagle2 phasing and the African Genome 
Resources panel). We then subsetted to the HLA region (GRCh37 posi-
tion between 28191116 and 34554976) and used the HIBAG version 1.22 
software hlaParallelAttrBagging function to create an HLA reference 
index consisting of seven independent classifiers that could be used 
to predict HLA from imputed SNP inputs69. We then used those indices 
with HIBAG’s hlaPredict function to impute HLA types for our cohort.

We evaluated imputation accuracy against the sequence-based 
typing ground truth sets by calculating the percentage of alleles called 
correctly out of 2N where N is the total number of individuals in the 
ground-truth set. We excluded novel alleles from these calculations 
for the Sierra Leone set. We also estimated the accuracy of our imputa-
tion for HLA-A, HLA-B, HLA-C, HLA-DQB1 and HLA-DRB1 for separate 

dataset of 76 Mende and 84 Esan individuals from the 1KGP who were 
genotyped in our cohort and HLA-typed by Gourraud et al.53.

HLA association analysis. We calculated dosages for each allele by 
summing the posterior probabilities for each genotype output by 
HIBAG that contained the allele. We only included alleles with minor 
allele frequency above 1% in a cohort for association analysis. We then 
used the same mixed logistic regression model as for the SNP-based 
GWAS to associate the HLA alleles with Lassa fever phenotypes, using 
the dosage for each allele as the predictor and using sex and PCs as 
fixed effect covariates.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw de-identified genetic data from this study have been submit-
ted to the European Genome–Phenome Archive (dataset IDs 
EGAD00010002510 and EGAD00010002509). The vcf file contain-
ing these data can be accessed by registering an account with EGA 
(https://ega-archive.org/register/) and making a request to the Data 
Access Committee, following which a download will be made available 
to the account holder.

Summary statistics for genetic analyses reported in this study are 
available in the GWAS catalogue (https://www.ebi.ac.uk/gwas/) under 
accession codes GCST90301246, GCST90301247, GCST90301248 and 
GCST90301249. Meta-analyses of the GWASs are available in Supple-
mentary Tables 1 and 2. Summary statistics for the MPRAs are included 
in Supplementary Tables 3 and 5. Data from the 1KGP are available 
at https://www.internationalgenome.org/data/. Genome assembly 
hg19 is available at https://www.ncbi.nlm.nih.gov/datasets/genome/ 
GCF_000001405.13/.

Code availability
Data analysis scripts employed in this manuscript are publicly available 
on GitHub at https://github.com/dylkot/lassa_fever_gwas.
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Extended Data Fig. 1 | Timeline of cohort recruitment in each country. Breakdown of enrolled patients by country, cohort, and disease status.
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Extended Data Fig. 2 | Quality control analyses for the susceptibility GWAS. 
(A) Histogram of ages in the Nigeria and Sierra Leone cohorts, separated by case/
control status. (B) Histogram of the maximum relatedness coefficient between 
each individual and all other individuals in the Nigerian (NG) and Sierra Leonean 
(SL) cohorts. (C) Principal component analysis (PCA) of the NG and SL cohorts, 
colored by case-control status. PCs were computed on unrelated individuals  
and then all individuals were projected onto those components (Methods).  

(D) Quantile-quantile plots of -log10 P-values from the susceptibility GWAS 
against expected quantiles. (E) Manhattan plots showing the -log10 P-value for 
each genomic variant for the LF susceptibility associations. P-values in D and E 
are based on saddlepoint-approximated score tests (SAIGE), while meta-analysis 
P-values are derived from meta-analysis (METAL) of P-values generated from  
each cohort.
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Extended Data Fig. 3 | Quality control analyses for the GWAS of LF clinical 
outcome. (A) Principal component analysis (PCA) of the NG and SL cohorts, 
colored by clinical outcome. PCs were computed on unrelated individuals, 
and then all individuals were projected onto those components. (B) Quantile-
quantile plots of -log10 P-values from the outcome GWAS against expected 

quantiles. (C) Comparison of the outcome GWAS lead variants with and without 
inclusion of age as a covariate. P-values in B and C are based on saddlepoint-
approximated score tests (SAIGE), while meta-analysis P-values are derived from 
meta-analysis (METAL) of P-values generated from each cohort. Odds ratios are 
computed from Firth logistic regression.
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Extended Data Fig. 4 | MPRA analyses of the susceptibility and outcome 
GWAS peaks. (A) Scatter plot of lead susceptibility GWAS loci described 
in the main text showing chromosomal position against -log10 association 
P-value. Variants are colored by the linkage disequilibrium (LD) coefficient of 
determination R2 between each variant and the most significant ‘lead’ variant 
in the locus. (B) Same as A but for the lead variants in the fatal outcome GWAS. 

(C–F) Same as A and B but colored by whether the variant showed statistically 
significant skew (q-value < 0.05) in the massively parallel reporter assay in 
the K562 cell line (C and E) or HepG2 cell line (D and F). P-values are based on 
saddlepoint-approximated score tests (SAIGE), while meta-analysis P-values are 
derived from meta-analysis (METAL) of P-values generated from each cohort.
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Extended Data Fig. 5 | LARGE1 haplotype association by recruitment 
period. (A, B) Frequencies of the long-range LARGE1 haplotype by the period of 
recruitment as well as by case-control status for Nigeria (A) and Sierra Leone (B). 

P-values are from mixed logistic models association testing within the indicated 
recruitment period. Error bars represent 95% bootstrap confidence intervals for 
allele frequency. N for each cohort within each country is defined in Table S2.
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Extended Data Table 1 | Summary of GWAS collections for the Nigerian and Sierra Leonean cohorts

Includes breakdown of samples by sex, includes age mean and SD for each sample set, and breakdown of clinical outcome for cases.
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Extended Data Table 2 | Detailed summary of GWAS collections

Includes breakdown of samples by collection time period, genotyping array, split of controls into village and trio recruitments, and diagnostic categories of cases. For the case diagnostic 
category, Nigerian cases were positive by RT-qPCR (qPCR+) and/or sequencing (Seq+), whereas Sierra Leonean cases were positive by antigen ELISA (Antigen+) and/or sequencing. The last 
column Both+ specifies the number of cases who were positive by both sequencing and RT-qPCR or ELISA.
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Extended Data Table 3 | Overview of clinical symptoms

Percentage of cases with a clinical sign or symptom at the time of admission, stratified by age. Below each age range is the number of individuals in that group with clinical data available. 
We report the large-sample approximation test statistic (Z) and P-value (P) for a Wilcoxon Ranksum test comparing the median age of subjects with and without each symptom. Conjunctival 
injection was recorded for the NG cohort but not the SL cohort, and lower extremity swelling or jaundice were recorded for the SL cohort but not the NG cohort. Bleeding includes any 
observed bleeding such as epistaxis, hematemesis, hematuria, melena, and hematochezia. Fever is defined as a temperature on admission of greater than 37.8 degrees celsius.
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Extended Data Table 4 | Comparison of lead variants between the outcome and susceptibility GWAS analyses

Displays odds ratios (OR) and P-values for lead variants in either the susceptibility GWAS (top) or outcome GWAS (bottom). P-values are based on saddlepoint-approximated score tests 
(SAIGE), while meta-analysis P-values are derived from meta-analysis (METAL) of P-values generated from each cohort. Odds ratios are computed from Firth logistic regression. *Variants with 
an asterisk were excluded from the corresponding analysis due to quality control filters but are included here for completeness.
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Extended Data Table 5 | Uncovered HLA alleles

Novel HLA alleles identified in sequence-based HLA typing of 297 Sierra Leoneans.
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