Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A conjugative plasmid that augments virulence in Klebsiella pneumoniae

Abstract

A virulence-encoding plasmid, p15WZ-82_Vir, which formed as a result of the integration of a 100-kb fragment of the hypervirulence plasmid pLVPK into a conjugative IncFIB plasmid, was recovered from a clinical Klebsiella variicola strain. Such a plasmid could be conjugated to carbapenem-resistant Klebsiella strains, enabling them to simultaneously express the carbapenem resistance- and hypervirulence-associated phenotypes. Unlike the non-conjugative pLVPK plasmid, emergence of p15WZ-82_Vir may promote rapid dissemination of virulence-encoding elements among Gram-negative bacterial pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sequence alignment of conjugative virulence plasmid p15WZ-82_Vir and its contribution to the virulence of K. pneumoniae.

Similar content being viewed by others

Data availability

Complete sequences of the chromosome of strain 15WZ-82, and those of the p15WZ-82_Vir, p15WZ-82_KPC and p15WZ-82_res plasmids, have been deposited with the GenBank databases under accession nos. CP032354, CP032355, CP032356 and CP032357. All other data related to this study are available upon request.

References

  1. Paczosa, M. K. & Mecsas, J. Microbiol. Mol. Biol. Rev. 80, 629–661 (2016).

    Article  CAS  Google Scholar 

  2. Shon, A. S. & Russo, T. A. Future Microbiol. 7, 669–671 (2012).

    Article  CAS  Google Scholar 

  3. Zhang, Y. et al. J. Infect. 71, 553–560 (2015).

    Article  Google Scholar 

  4. Li, W. et al. Clin. Infect. Dis. 58, 225–232 (2014).

    Article  CAS  Google Scholar 

  5. Gu, D. et al. Lancet Infect. Dis. 18, 37–46 (2018).

    Article  Google Scholar 

  6. Hopkins, K. L. et al. J. Antimicrob. Chemother. 72, 2129–2131 (2017).

    Article  CAS  Google Scholar 

  7. Zurfluh, K., Poirel, L., Nordmann, P., Klumpp, J. & Stephan, R. Antimicrob. Resist. Infect. Control 4, 38 (2015).

    Article  CAS  Google Scholar 

  8. Diancourt, L., Passet, V., Verhoef, J., Grimont, P. A. & Brisse, S. J. Clin. Microbiol. 43, 4178–4182 (2005).

    Article  CAS  Google Scholar 

  9. Brisse, S. et al. J. Clin. Microbiol. 51, 4073–4078 (2013).

    Article  Google Scholar 

  10. Chen, Y. T. et al. Gene 337, 189–198 (2004).

    Article  CAS  Google Scholar 

  11. Taylor, D. E. et al. J. Bacteriol. 184, 4690–4698 (2002).

    Article  CAS  Google Scholar 

  12. Weinstein, M. P. M100 Performance Standards for Antimicrobial Susceptibility Testing (Clinical and Laboratory Standards Institute, 2018).

  13. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. PLoS Comput. Biol. 13, e1005595 (2017).

    Article  Google Scholar 

  14. Brettin, T. et al. Sci. Rep. 5, 8365 (2015).

    Article  Google Scholar 

  15. Seemann, T. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  Google Scholar 

  16. Wyres, K. L. et al. Microb. Genom. 2, e000102 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Alikhan, N. F., Petty, N. K., Ben Zakour, N. L. & Beatson, S. A. BMC Genomics 12, 402 (2011).

    Article  CAS  Google Scholar 

  18. Sullivan, M. J., Petty, N. K. & Beatson, S. A. Bioinformatics 27, 1009–1010 (2011).

    Article  CAS  Google Scholar 

  19. Huang, Y. et al. Antimicrob. Agents Chemother. 60, 4364–4368 (2016).

    Article  CAS  Google Scholar 

  20. McLaughlin, M. M. et al. BMC Infect. Dis. 14, 31 (2014).

    Article  Google Scholar 

  21. Zhang, R. et al. Antimicrob. Agents Chemother. 60, 709–711 (2016).

    Article  CAS  Google Scholar 

  22. Palacios, M. et al. mBio 9, e01443-18 (2018).

    Article  Google Scholar 

  23. Shon, A. S., Bajwa, R. P. & Russo, T. A. Virulence 4, 107–118 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Chen, C. Yang and Z. Zheng from our laboratory for their help with the PFGE and animal experiments, and L. Ye and N. Dong for their assistance with the sequencing experiments. We thank K.-Y. Yuen for providing the clinical K. pneumoniae strains. This study was funded by the Collaborative Research Fund from the Research Grant Council of the Government of Hong Kong Special Administrative Region (no. C5026-16G) and the Research Impact Fund (no. R5011-18F).

Author information

Authors and Affiliations

Authors

Contributions

X.Y. designed the study, performed strain characterization, sequencing, conjugation assay, greater wax moth infection model, mucoviscosity and capsule production assays and drafted the manuscript. E.W.-C.C. designed the study and edited the manuscript. R.Z. participated in study design and strain collection. S.C. designed the study, supervised the whole project and wrote the manuscript.

Corresponding author

Correspondence to Sheng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Supplementary Figs. 1–5.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wai-Chi Chan, E., Zhang, R. et al. A conjugative plasmid that augments virulence in Klebsiella pneumoniae. Nat Microbiol 4, 2039–2043 (2019). https://doi.org/10.1038/s41564-019-0566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0566-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing