Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity

Abstract

Emerging evidence implicates a role of the gut microbiota in colorectal cancer (CRC). Peptostreptococcus anaerobius (P. anaerobius) is an anaerobic bacterium selectively enriched in the faecal and mucosal microbiota from patients with CRC, but its causative role and molecular mechanism in promoting tumorigenesis remain unestablished. We demonstrate that P. anaerobius adheres to the CRC mucosa and accelerates CRC development in ApcMin/+ mice. In vitro assays and transmission electron microscopy revealed that P. anaerobius selectively adheres to CRC cell lines (HT-29 and Caco-2) compared to normal colonic epithelial cells (NCM460). We identified a P. anaerobius surface protein, putative cell wall binding repeat 2 (PCWBR2), which directly interacts with colonic cell lines via α21 integrin, a receptor frequently overexpressed in human CRC tumours and cell lines. Interaction between PCWBR2 and integrin α21 induces the activation of the PI3K–Akt pathway in CRC cells via phospho-focal adhesion kinase, leading to increased cell proliferation and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. NF-κB in turn triggers a pro-inflammatory response as indicated by increased levels of cytokines, such as interleukin-10 and interferon-γ in the tumours of P. anaerobius-treated ApcMin/+ mice. Analyses of tumour-infiltrating immune cell populations in P. anaerobius-treated ApcMin/+ mice revealed significant expansion of myeloid-derived suppressor cells, tumour-associated macrophages and granulocytic tumour-associated neutrophils, which are associated with chronic inflammation and tumour progression. Blockade of integrin α21 by RGDS peptide, small interfering RNA or antibodies all impair P. anaerobius attachment and abolish P. anaerobius-mediated oncogenic response in vitro and in vivo. Collectively, we show that P. anaerobius drives CRC via a PCWBR2-integrin α21-PI3K–Akt–NF-κB signalling axis and identify the PCWBR2-integrin α21 axis as a potential therapeutic target for CRC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: P. anaerobius promotes colonic tumorigenesis in ApcMin/+ mice.
Fig. 2: P. anaerobius attaches to colon cells through its surface protein PCWBR2.
Fig. 3: P. anaerobius attaches to colon cells by interacting with the epithelial cell surface receptor integrin α21.
Fig. 4: P. anaerobius mediates integrin β12 signalling to activate the PI3K–Akt pathway to promote cell proliferation in vitro, and these effects are verified in ApcMin/+ mouse model.
Fig. 5: P. anaerobius modifies the tumour immune microenvironment to promote CRC.
Fig. 6: Blockade of integrin β12-attenuated P. anaerobius-associated colon tumorigenesis in ApcMin/+ mice.

Similar content being viewed by others

Data availability

All datasets and raw data generated and/or analysed during the current study are available from the corresponding author upon reasonable request. The RNA-seq data are deposited with the NCBI with accession code PRJNA544569.

References

  1. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  CAS  Google Scholar 

  2. Nistal, E., Fernández-Fernández, N., Vivas, S. & Olcoz, J. L. Factors determining colorectal cancer: the role of the intestinal microbiota. Front. Oncol. 5, 220 (2015).

    Article  Google Scholar 

  3. Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).

    Article  Google Scholar 

  4. Sobhani, I. et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS ONE 6, e16393 (2011).

    Article  CAS  Google Scholar 

  5. Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2017).

    Article  CAS  Google Scholar 

  6. Nakatsu, G. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 6, 8727 (2015).

    Article  CAS  Google Scholar 

  7. Rakoff-Nahoum, S. & Medzhitov, R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317, 124–127 (2007).

    Article  CAS  Google Scholar 

  8. Shen, X. J. et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes 1, 138–147 (2010).

    Article  Google Scholar 

  9. Wang, T. T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320–329 (2012).

    Article  CAS  Google Scholar 

  10. Zackular, J. P. et al. The gut microbiome modulates colon tumorigenesis. mBio 4, e00692-13 (2013).

    Article  Google Scholar 

  11. Wu, S. G. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–U64 (2009).

    Article  CAS  Google Scholar 

  12. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Article  CAS  Google Scholar 

  13. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    Article  CAS  Google Scholar 

  14. Humphries, J. D., Byron, A. & Humphries, M. J. Integrin ligands at a glance. J. Cell Sci. 119, 3901–3903 (2006).

    Article  CAS  Google Scholar 

  15. Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672 (2014).

    Article  CAS  Google Scholar 

  16. Murphy, E. C. & Frick, I. M. Gram-positive anaerobic cocci: commensals and opportunistic pathogens. FEMS Microbiol. Rev. 37, 520–553 (2013).

    Article  CAS  Google Scholar 

  17. Tsoi, H. et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 152, 1419–1433 (2017).

    Article  Google Scholar 

  18. Xia, H., Nho, R. S., Kahm, J., Kleidon, J. & Henke, C. A. Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a β1 integrin viability signaling pathway. J. Biol. Chem. 279, 33024–33034 (2004).

    Article  CAS  Google Scholar 

  19. Reif, S. et al. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-Akt signaling in hepatic stellate cell proliferation and type I collagen expression. J. Biol. Chem. 278, 8083–8090 (2003).

    Article  CAS  Google Scholar 

  20. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article  CAS  Google Scholar 

  21. Movahedi, K. et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111, 4233–4244 (2008).

    Article  CAS  Google Scholar 

  22. Kim, J. & Bae, J. S. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016, 6058147 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012).

    Article  CAS  Google Scholar 

  24. Irrazábal, T., Belcheva, A., Girardin, S. E., Martin, A. & Philpott, D. J. The multifaceted role of the intestinal microbiota in colon cancer. Mol. Cell 54, 309–320 (2014).

    Article  Google Scholar 

  25. Bridgewater, R. E., Norman, J. C. & Caswell, P. T. Integrin trafficking at a glance. J. Cell Sci. 125, 3695–3701 (2012).

    Article  CAS  Google Scholar 

  26. Watarai, M., Funato, S. & Sasakawa, C. Interaction of Ipa proteins of Shigella flexneri with α5β1 integrin promotes entry of the bacteria into mammalian cells. J. Exp. Med. 183, 991–999 (1996).

    Article  CAS  Google Scholar 

  27. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11, 329–341 (2010).

    Article  CAS  Google Scholar 

  28. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  Google Scholar 

  29. Liu, Y. & Cao, X. The origin and function of tumor-associated macrophages. Cell. Mol. Immunol. 12, 1–4 (2015).

    Article  Google Scholar 

  30. Swamy, M. V. et al. Chemoprevention of familial adenomatous polyposis by low doses of atorvastatin and celecoxib given individually and in combination to APCMin mice. Cancer Res. 66, 7370–7377 (2006).

    Article  CAS  Google Scholar 

  31. Letourneau, J., Levesque, C., Berthiaume, F., Jacques, M. & Mourez, M. In vitro assay of bacterial adhesion onto mammalian epithelial cells. J. Vis. Exp. 16, 2783 (2011).

    Google Scholar 

  32. Geva-Zatorsky, N. et al. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nat. Med. 21, 1091–1100 (2015).

    Article  CAS  Google Scholar 

  33. Han, Y. W. et al. Identification and characterization of a novel adhesin unique to oral fusobacteria. J. Bacteriol. 187, 5330–5340 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Science and Technology Program Grant Shenzhen (no. JCYJ20170413161534162), HMRF Hong Kong (no. 17160862), a grant from the Faculty of Medicine CUHK on Microbiota Research, RGC-GRF Hong Kong (nos. 14111216 and 14163817), a Vice-Chancellor’s Discretionary Fund CUHK (no. 4930711), and the Shenzhen Virtual University Park Support Scheme to the CUHK Shenzhen Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

X.L. performed the cell line and mice experiments and drafted the manuscript. L.T., E.S.H.C., C.H.S. and M.Y.Y.G. performed the mice experiments. C.C.W. revised the manuscript. O.O.C. analysed the RNA-seq data. A.W.H.C. analysed the H&E staining data. F.K.L.C. and J.J.Y.S. commented on the study. J.Y. designed and supervised the study and revised the manuscript.

Corresponding author

Correspondence to Jun Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Supplementary Tables 1 and 2, Supplementary Table 3.3, Supplementary Tables 4–6, Supplementary Video legend, uncropped gels and blots.

Reporting Summary

Supplementary Table 3.1 and 3.2

3.1, Gene expression levels detected by RNA-sequencing in HT-29 cell line after P. anaerobius treatment. 3.2, Gene expression levels detected by RNA-sequencing in Caco-2 cell line after P. anaerobius treatment.

Supplementary Video 1

Fluorescent live cell microscopy showing that FITC-labelled P. anaerobius attaches to Caco-2 cells. P. anaerobius was labelled with AF488 DIBO and immediately co-cultured with Caco-2 cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, X., Wong, C.C., Tong, L. et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat Microbiol 4, 2319–2330 (2019). https://doi.org/10.1038/s41564-019-0541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0541-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer