Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protection against influenza infection requires early recognition by inflammatory dendritic cells through C-type lectin receptor SIGN-R1

Abstract

The early phase of influenza infection occurs in the upper respiratory tract and the trachea, but little is known about the initial events of virus recognition and control of viral dissemination by the immune system. Here, we report that inflammatory dendritic cells (IDCs) are recruited to the trachea shortly after influenza infection through type I interferon-mediated production of the chemokine CCL2. We further show that recruited IDCs express the C-type lectin receptor SIGN-R1, which mediates direct recognition of the virus by interacting with N-linked glycans present in glycoproteins of the virion envelope. Activation of IDCs via SIGN-R1 triggers the production of the chemokines CCL5, CXCL9 and CXCL10, which initiate the recruitment of protective natural killer (NK) cells in the infected trachea. In the absence of SIGN-R1, the recruitment and activation of NK cells is impaired, leading to uncontrolled viral proliferation. In sum, our results provide insight into the orchestration of the early cellular and molecular events involved in immune protection against influenza.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Influenza infection promotes early recruitment of IDCs to the trachea.
Fig. 2: Recruited IDCs are located in close proximity to the epithelial cell layer during influenza infection.
Fig. 3: Type I IFN is required for the production of CCL2, which recruits IDC precursors to the trachea.
Fig. 4: IDCs express the lectin receptor SIGN-R1, which recognizes influenza PR8 through binding to glycosylated viral proteins.
Fig. 5: SIGN-R1 is involved the production of inflammatory chemokines by IDCs and the recruitment of NK cells into the tracheal mucosa.
Fig. 6: SIGN-R1+ IDCs are required to control influenza infection in the trachea.

Similar content being viewed by others

Data availability

All data from this study are available from the corresponding author upon request.

References

  1. Eichelberger, M., Allan, W., Zijlstra, M., Jaenisch, R. & Doherty, P. C. Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. J. Exp. Med. 174, 875–880 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Pulendran, B. & Maddur, M. S. Innate immune sensing and response to influenza. Life Sci. J. 6, 23–71 (2014).

    Google Scholar 

  3. Rello, J. & Pop-Vicas, A. Clinical review: primary influenza viral pneumonia. Crit. Care 13, 235 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wikstrom, M. E. & Stumbles, P. A. Mouse respiratory tract dendritic cell subsets and the immunological fate of inhaled antigens. Immunol. Cell Biol. 85, 182–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. GeurtsvanKessel, C. H. et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b but not plasmacytoid dendritic cells. J. Exp. Med. 205, 1621–1634 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brimnes, M. K., Bonifaz, L., Steinman, R. M. & Moran, T. M. Influenza virus–induced dendritic cell maturation is associated with the induction of strong T cell immunity to a coadministered, normally nonimmunogenic protein. J. Exp. Med. 198, 133–144 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Geurtsvankessel, C. H. & Lambrecht, B. N. Division of labor between dendritic cell subsets of the lung. Mucosal Immunol. 1, 442–450 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Monteiro, J. & Lepenies, B. Myeloid C-type lectin receptors in viral recognition and antiviral immunity. Viruses 9, 59 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  11. Kang, Y. et al. The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc. Natl Acad. Sci. USA 101, 215–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Gonzalez, S. F. et al. Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat. Immunol. 11, 427–434 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Taylor, P. R. et al. The role of SIGNR1 and the β-glucan receptor (dectin-1) in the nonopsonic recognition of yeast by specific macrophages. J. Immunol. 172, 1157–1162 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Parent, S. A. et al. Molecular characterization of the murine SIGNR1 gene encoding a C-type lectin homologous to human DC-SIGN and DC-SIGNR. Gene 293, 33–46 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nat. Immunol. 14, 986–995 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Auffray, C., Sieweke, M. H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. McKean, D. et al. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA 81, 3180–3184 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Khan, W. H., Shrungaram, R. V. L. N., Broor, S. & Parveen, S. Glycosylation studies of G protein of group B human respiratory syncytial virus (hRSV) in eukaryotic system. Int. J. Curr. Microbiol. Appl. Sci. 3, 107–113 (2014).

    CAS  Google Scholar 

  20. Yang, C. F. et al. Human metapneumovirus G protein is highly conserved within but not between genetic lineages. Arch. Virol. 158, 1245–1252 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gregoire, C. et al. The trafficking of natural killer cells. Immunol. Rev. 220, 169–182 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turner, M. D., Nedjai, B., Hurst, T. & Pennington, D. J. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta Mol. Cell Res. 1843, 2563–2582 (2014).

    Article  CAS  Google Scholar 

  23. Deshmane, S. L., Kremlev, S., Amini, S. & Sawaya, B. E. Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interf. Cytokine Res. 29, 313–326 (2009).

    Article  CAS  Google Scholar 

  24. Jia, T. et al. Additive roles for MCP-1 and MCP-3 in CCR2-mediated recruitment of inflammatory monocytes during Listeria monocytogenes infection. J. Immunol. 180, 6846–6853 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Nakano, H. et al. Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute TH1 immune responses. Nat. Immunol. 10, 394–402 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herold, S. et al. Alveolar epithelial cells direct monocyte transepithelial migration upon influenza virus infection: impact of chemokines and adhesion molecules. J. Immunol. 177, 1817–1824 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Pattison, M. J., MacKenzie, K. F., Elcombe, S. E. & Arthur, J. S. C. IFNβ autocrine feedback is required to sustain TLR induced production of MCP-1 in macrophages. FEBS Lett. 587, 1496–1503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chatziandreou, N. et al. Macrophage death following influenza vaccination initiates the inflammatory response that promotes dendritic cell function in the draining lymph node. Cell Rep. 18, 2427–2440 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Tate, M. D. & Hertzog, P. J. P109 The role of the type I interferon receptor during influenza virus infection. Cytokine 59, 554–555 (2012).

    Article  Google Scholar 

  30. Helft, J. et al. Cross-presenting CD103+ dendritic cells are protected from influenza virus infection. J. Clin. Invest. 122, 4037–4047 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Geijtenbeek, T. B. H. & Gringhuis, S. I. Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol. 9, 465–479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tanne, A. et al. A murine DC-SIGN homologue contributes to early host defense against Mycobacterium tuberculosis. J. Exp. Med. 206, 2205–2220 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Taub, D. D. et al. Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J. Exp. Med. 177, 1809–1814 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Hickman, H. D. et al. CXCR3 Chemokine receptor enables local CD8+ T cell migration for the destruction of virus-infected cells. Immunity 42, 524–537 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Biron, C. A., Byron, K. S. & Sullivan, J. L. Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med. 320, 1731–1735 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Stein-Streilein, J. & Guffee, J. In vivo treatment of mice and hamsters with antibodies to asialo GM1 increases morbidity and mortality to pulmonary influenza infection. J. Immunol. 136, 1435–1441 (1986).

    CAS  PubMed  Google Scholar 

  38. Jost, S. & Altfeld, M. Control of human viral infections by natural killer cells. Annu. Rev. Immunol. 31, 163–194 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. He, X.-S. et al. T cell-dependent production of IFN-γ by NK cells in response to influenza A virus. J. Clin. Invest. 114, 1812–1819 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ge, M. Q. et al. NK cells regulate CD8+ T cell priming and dendritic cell migration during influenza A Infection by IFN- and perforin-dependent mechanisms. J. Immunol. 189, 2099–2109 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Hwang, I. et al. Activation mechanisms of natural killer cells during influenza virus infection. PLoS ONE 7, e51858 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Verbist, K. C., Rose, D. L., Cole, C. J., Field, M. B. & Klonowski, K. D. IL-15 Participates in the respiratory innate immune response to influenza virus infection. PLoS ONE 7, e37539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chaix, J. et al. Cutting edge: priming of NK cells by IL-18. J. Immunol. 181, 1627–1631 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Haeberlein, S., Sebald, H., Bogdan, C. & Schleicher, U. IL-18, but not IL-15, contributes to the IL-12-dependent induction of NK-cell effector functions by Leishmania infantum in vivo. Eur. J. Immunol. 40, 1708–1717 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dawson, T. C., Beck, M. A., Kuziel, W. A., Henderson, F. & Maeda, N. Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus TL-156. Am. J. Pathol. 156, 1951–1959 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rimmelzwaan, G. F., Baars, M. M., de Lijster, P., Fouchier, R. A. & Osterhaus, A. D. Inhibition of influenza virus replication by nitric oxide. J. Virol. 73, 8880–8883 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Seo, S. H. & Webster, R. G. Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells. J. Virol. 76, 1071–1076 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin, K. L., Suzuki, Y., Nakano, H., Ramsburg, E. & Gunn, M. D. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J. Immunol. 180, 2562–2572 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Lin, S.-J. et al. The pathological effects of CCR2+ inflammatory monocytes are amplified by an IFNAR1-triggered chemokine feedback loop in highly pathogenic influenza infection. J. Biomed. Sci. 21, 99 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pamer, E. G. Tipping the balance in favor of protective immunity during influenza virus infection. Proc. Natl Acad. Sci. USA 106, 4961–4962 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lindquist, R. L. et al. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5, 1243–1250 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Boring, L. et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 100, 2552–2561 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Müller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994).

    Article  PubMed  Google Scholar 

  54. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Palomino-Segura, M. et al. Imaging cell interaction in tracheal mucosa during influenza virus infection using two-photon intravital microscopy. J. Vis. Exp. 138, e58355 (2018).

    Google Scholar 

  56. Gonzalez, S. F., Jayasekera, J. P. & Carroll, M. C. Complement and natural antibody are required in the long-term memory response to influenza virus. Vaccine 26, I86–I93 (2008).

    Article  CAS  Google Scholar 

  57. Harris, P. et al. Double-stranded RNA induces molecular and inflammatory signatures that are directly relevant to COPD. Mucosal Immunol. 6, 474–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Jarrossay for the provision of technical support and M. Uguccioni for critical discussion of the manuscript; J. Paulson (The Scripps Research Institute) for initially providing KO mice; D. Corti (Humabs) for providing the antibody FI6 and Core G of the Consortium for Functional Glycomics (S. Orr) for mouse phenotyping. This work was supported by the Swiss National Foundation grants, R’equipt (145038), Ambizione (148183) and grant 176124 to S.F.G., the European Commission Marie Curie Reintegration Grant (612742), and SystemsX.ch for a grant to D.U.P. (2013/124). This work was partly supported by Center for Research on Influenza Pathogenesis and National Institute of Allergy and Infectious Diseases-funded Center of Excellence on Influenza Research and Pathogenesis (contract number HHSN272201400008C).

Author information

Authors and Affiliations

Authors

Contributions

M.P.-S. and S.F.G. conceived the project, designed experiments and analysed and interpreted the results. M.P.-S. performed most of the experiments. L.P. designed, performed and analysed in vitro SIGN-R1–HA-interaction experiments with help from S.F.G. and M.P.-S. T.V. helped to perform confocal microscopy experiments. I.L. helped to study the in vitro chemokine production of IDCs. R.D. and D.U.P. analysed confocal microscopy data. G.W. and A.G.-S. generated the recombinant influenza virus. Y.F., N.C., F.S., M.C.C. and O.N. advised on the experiments, interpreted results, helped to develop protocols and contributed with reagents. S.F.G. and M.P.-S. wrote the manuscript with the help of N.C., L.P. and O.N. S.F.G. directed the study.

Corresponding author

Correspondence to Santiago F. Gonzalez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palomino-Segura, M., Perez, L., Farsakoglu, Y. et al. Protection against influenza infection requires early recognition by inflammatory dendritic cells through C-type lectin receptor SIGN-R1. Nat Microbiol 4, 1930–1940 (2019). https://doi.org/10.1038/s41564-019-0506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0506-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing