Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antibody responses to viral infections: a structural perspective across three different enveloped viruses

Abstract

Antibodies serve as critical barriers to viral infection. Humoral immunity to a virus is achieved through the dual role of antibodies in communicating the presence of invading pathogens in infected cells to effector cells, and in interfering with processes essential to the viral life cycle (chiefly entry into the host cell). For individuals that successfully control infection, virus-elicited antibodies can provide lifelong surveillance and protection from future insults. One approach to understand the nature of a successful immune response has been to utilize structural biology to uncover the molecular details of antibodies derived from vaccines or natural infection and how they interact with their cognate microbial antigens. The ability to isolate antigen-specific B-cells and rapidly solve structures of functional, monoclonal antibodies in complex with viral glycoprotein surface antigens has greatly expanded our knowledge of the sites of vulnerability on viruses. In this Review, we compare the adaptive humoral immune responses to human immunodeficiency virus (HIV), influenza and filoviruses, with a particular focus on neutralizing antibodies. The pathogenesis of each of these viruses is quite different, providing an opportunity for comparison of immune responses: HIV causes a persistent, chronic infection; influenza, an acute infection with multiple exposures during a lifetime and annual vaccination; filoviruses, a virulent, acute infection. Neutralizing antibodies that develop under these different constraints are therefore sentinels that can provide insight into the underlying humoral immune responses, as well as important lessons to guide future development of vaccines and immunotherapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Points of antibody blockade to enveloped virus entry and egress.
Fig. 2: Antibody structure and domain topology.
Fig. 3: Shared structural features of type I glycoproteins.
Fig. 4: Examples of common and divergent sites of enveloped virus vulnerability targeted by neutralizing antibodies.
Fig. 5: The immunogenic landscape of enveloped viruses, illuminated by structural biology.

Similar content being viewed by others

References

  1. White, J. M. & Whittaker, G. R. Fusion of enveloped viruses in endosomes. Traffic 17, 593–614 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Harrison, S. C. Viral membrane fusion. Virology 479–480, 498–507 (2015).

    PubMed  Google Scholar 

  3. Harris, L. J., Larson, S. B., Hasel, K. W. & McPherson, A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36, 1581–1597 (1997).

    CAS  PubMed  Google Scholar 

  4. Harris, L. J., Skaletsky, E. & McPherson, A. Crystallographic structure of an intact IgG1 monoclonal antibody. J. Mol. Biol. 275, 861–872 (1998).

    CAS  PubMed  Google Scholar 

  5. Saphire, E. O. et al. Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science 293, 1155–1159 (2001).

    CAS  PubMed  Google Scholar 

  6. Scapin, G. et al. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat. Struct. Mol. Biol. 22, 953–958 (2015).

    CAS  PubMed  Google Scholar 

  7. Stanfield, R. L. & Wilson, I. A. Antibody Structure. Microbiol. Spectr. 2, AID-0012-2013 (2014).

  8. Wilson, I. A. & Stanfield, R. L. Antibody-antigen interactions: new structures and new conformational changes. Curr. Opin. Struct. Biol. 4, 857–867 (1994).

    CAS  PubMed  Google Scholar 

  9. Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43 (1994).

    CAS  PubMed  Google Scholar 

  10. Wilson, I. A., Skehel, J. J. & Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289, 366–373 (1981).

    CAS  PubMed  Google Scholar 

  11. Julien, J. P. et al. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 342, 1477–1483 (2013).

    CAS  PubMed  Google Scholar 

  12. Lyumkis, D. et al. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 342, 1484–1490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan, D. C., Fass, D., Berger, J. M. & Kim, P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997).

    CAS  PubMed  Google Scholar 

  14. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430 (1997).

    CAS  PubMed  Google Scholar 

  15. Lee, J. E. et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454, 177–182 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Weissenhorn, W., Carfi, A., Lee, K. H., Skehel, J. J. & Wiley, D. C. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol. Cell 2, 605–616 (1998).

    CAS  PubMed  Google Scholar 

  17. Cook, J. D. & Lee, J. E. The secret life of viral entry glycoproteins: moonlighting in immune evasion. PLoS Pathog. 9, e1003258 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tate, M. D. et al. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6, 1294–1316 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Wu, N. C. & Wilson, I. A. A Perspective on the structural and functional constraints for immune evasion: insights from influenza virus. J. Mol. Biol. 429, 2694–2709 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Crispin, M., Ward, A. B. & Wilson, I. A. Structure and immune recognition of the HIV glycan shield. Ann. Rev. Biophys. 47, 499–523 (2018).

    CAS  Google Scholar 

  21. Cao, L. et al. Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nat. Commun. 8, 14954 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, J. H., de Val, N., Lyumkis, D. & Ward, A. B. Model building and refinement of a natively glycosylated HIV-1 Env protein by high-resolution cryoelectron microscopy. Structure 23, 1943–1951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ekiert, D. C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Flyak, A. I. et al. Mechanism of human antibody-mediated neutralization of Marburg virus. Cell 160, 893–903 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Julien, J. P. et al. Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proc. Natl Acad. Sci. USA 110, 4351–4356 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kong, L. et al. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nat. Struct. Mol. Biol. 20, 796–803 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Murin, C. D. et al. Structure of 2G12 Fab2 in complex with soluble and fully glycosylated HIV-1 Env by negative-stain single-particle electron microscopy. J. Virol. 88, 10177–10188 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Williams, K. L. et al. Superinfection drives HIV neutralizing antibody responses from several B cell lineages that contribute to a polyclonal repertoire. Cell Rep. 23, 682–691 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bianchi, M. et al. Electron-microscopy-based epitope mapping defines specificities of polyclonal antibodies elicited during HIV-1 BG505 envelope trimer immunization. Immunity 49, 288–300 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ozorowski, G. et al. Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature 547, 360–363 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Georgiev, I. S., Gordon Joyce, M., Zhou, T. & Kwong, P. D. Elicitation of HIV-1-neutralizing antibodies against the CD4-binding site. Curr. Opin. HIV AIDS 8, 382–392 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou, T. et al. Structural Repertoire of HIV-1-neutralizing antibodies targeting the CD4 supersite in 14 donors. Cell 161, 1280–1292 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu, R. et al. A recurring motif for antibody recognition of the receptor-binding site of influenza hemagglutinin. Nat. Struct. Mol. Biol. 20, 363–370 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Garcia-Sastre, A. Influenza virus receptor specificity: disease and transmission. Am. J. Pathol. 176, 1584–1585 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. Stevens, J. et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404–410 (2006).

    CAS  PubMed  Google Scholar 

  36. Wu, N. C. et al. A complex epistatic network limits the mutational reversibility in the influenza hemagglutinin receptor-binding site. Nat. Commun. 9, 1264 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Wu, N. C. et al. Diversity of functionally permissive sequences in the receptor-binding site of influenza hemagglutinin. Cell Host Microbe 22, 247–248 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, P. S. et al. Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus. Nat. Commun. 5, 3614 (2014).

    PubMed  Google Scholar 

  39. Wu, N. C. et al. In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity. Nat. Commun. 8, 15371 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Julien, J. P., Lee, P. S. & Wilson, I. A. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Immunol. Rev. 250, 180–198 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. Laursen, N. S. & Wilson, I. A. Broadly neutralizing antibodies against influenza viruses. Antivir. Res. 98, 476–483 (2013).

    CAS  PubMed  Google Scholar 

  42. Lee, P. S. & Wilson, I. A. Structural characterization of viral epitopes recognized by broadly cross-reactive antibodies. Curr. Top. Microbiol. 386, 323–341 (2015).

    CAS  Google Scholar 

  43. Bornholdt, Z. A. et al. Host-primed Ebola virus GP exposes a hydrophobic NPC1 receptor-binding pocket, revealing a target for broadly neutralizing antibodies. mBio 7, e02154–15 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P. & Cunningham, J. M. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308, 1643–1645 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Miller, E. H. et al. Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J. 31, 1947–1960 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gnirss, K. et al. Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression. Virology 424, 3–10 (2012).

    CAS  PubMed  Google Scholar 

  47. King, L. B. et al. The Marburgvirus-neutralizing human monoclonal antibody MR191 targets a conserved site to block virus receptor binding. Cell Host Microbe 23, 101–109 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hashiguchi, T. et al. Structural basis for Marburg virus neutralization by a cross-reactive human antibody. Cell 160, 904–912 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, H. et al. Ebola viral glycoprotein bound to its endosomal receptor niemann-pick C1. Cell 164, 258–268 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin, Y. P. et al. Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin. Proc. Natl Acad. Sci. USA 109, 21474–21479 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ekiert, D. C. et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489, 526–532 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, P. S. et al. Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity. Proc. Natl Acad. Sci. USA 109, 17040–17045 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Whittle, J. R. et al. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc. Natl Acad. Sci. USA 108, 14216–14221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schmidt, A. G. et al. Viral receptor-binding site antibodies with diverse germline origins. Cell 161, 1026–1034 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kwong, P. D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Garrett, T. P., Wang, J., Yan, Y., Liu, J. & Harrison, S. C. Refinement and analysis of the structure of the first two domains of human CD4. J. Mol. Biol. 234, 763–778 (1993).

    CAS  PubMed  Google Scholar 

  57. Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou, T. et al. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329, 811–817 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou, T. et al. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445, 732–737 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bale, S. et al. Structural basis for differential neutralization of ebolaviruses. Viruses 4, 447–470 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dias, J. M. et al. A shared structural solution for neutralizing ebolaviruses. Nat. Struct. Mol. Biol. 18, 1424–1427 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee, J. E. & Saphire, E. O. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol. 4, 621–635 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Crowe, J. E. Jr. Principles of broad and potent antiviral human antibodies: insights for vaccine design. Cell Host Microbe 22, 193–206 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hashem, A. M. et al. Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus. Biochem. Bioph. Res. Co. 403, 247–251 (2010).

    CAS  Google Scholar 

  65. Murin, C. D., Bruhn, J. F., Bornholdt, Z. A., Copps, J., Stanfield, R. & Ward, A. B. Structural basis of pan-ebolavirus neutralization by an antibody targeting the glycoprotein fusion loop. Cell Rep. 24, 2723–2732 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. van Gils, M. J. et al. An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nat. Microbiol. 2, 16199 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Kong, R. et al. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science 352, 828–833 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu, K. et al. Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nat. Med. 24, 857–867 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kallewaard, N. L. et al. Structure and function analysis of an antibody recognizing all Influenza A subtypes. Cell 166, 596–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Prabhu, N. et al. Monoclonal antibodies against the fusion peptide of hemagglutinin protect mice from lethal influenza A virus H5N1 infection. J. Virol. 83, 2553–2562 (2009).

    CAS  PubMed  Google Scholar 

  71. Zhao, X. et al. Immunization-elicited broadly protective antibody reveals Ebolavirus fusion loop as a site of vulnerability. Cell 169, 891–904 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Furuyama, W. et al. Discovery of an antibody for pan-ebolavirus therapy. Sci. Rep. 6, 20514 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wec, A. Z. et al. Antibodies from a human survivor define sites of vulnerability for broad protection against Ebolaviruses. Cell 169, 878–890 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu, P. et al. Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc. Natl Acad. Sci. USA 100, 15812–15817 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu, P. et al. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441, 847–852 (2006).

    CAS  PubMed  Google Scholar 

  76. Lee, J. H., Ozorowski, G. & Ward, A. B. Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science 351, 1043–1048 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang, J. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406–412 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cardoso, R. M. et al. Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity 22, 163–173 (2005).

    CAS  PubMed  Google Scholar 

  79. Flyak, A. I. et al. Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2-MPER region. Nat. Microbiol. 3, 670–677 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Krammer, F. & Palese, P. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr. Opin. Virol. 3, 521–530 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dreyfus, C., Ekiert, D. C. & Wilson, I. A. Structure of a classical broadly neutralizing stem antibody in complex with a pandemic H2 influenza virus hemagglutinin. J. Virol. 87, 7149–7154 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Khanna, M., Sharma, S., Kumar, B. & Rajput, R. Protective immunity based on the conserved hemagglutinin stalk domain and its prospects for universal influenza vaccine development. Biomed. Res. Int. 2014, 546274 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Erbelding, E. J. et al. A universal Influenza vaccine: the strategic plan for the National Institute of Allergy and Infectious Diseases. J. Infect. Dis. 218, 347–354 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Impagliazzo, A. et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 349, 1301–1306 (2015).

    CAS  PubMed  Google Scholar 

  85. Krammer, F., Garcia-Sastre, A. & Palese, P. Is it possible to develop a “universal” influenza virus vaccine? Potential target antigens and critical aspects for a universal influenza vaccine. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a028845 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Krammer, F., Pica, N., Hai, R., Margine, I. & Palese, P. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J. Virol. 87, 6542–6550 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nachbagauer, R. et al. A universal influenza virus vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret studies. NPJ Vaccines 2, 26 (2017).

    PubMed  PubMed Central  Google Scholar 

  88. Yassine, H. M. et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat. Med. 21, 1065–1070 (2015).

    CAS  PubMed  Google Scholar 

  89. Irimia, A. et al. Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design. PLoS Pathog. 13, e1006212 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. Irimia, A., Sarkar, A., Stanfield, R. L. & Wilson, I. A. Crystallographic identification of lipid as an integral component of the epitope of HIV broadly neutralizing antibody 4E10. Immunity 44, 21–31 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Friesen, R. H. et al. A common solution to group 2 influenza virus neutralization. Proc. Natl Acad. Sci. USA 111, 445–450 (2014).

    CAS  PubMed  Google Scholar 

  92. Burton, D. R. Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2, 706–713 (2002).

    CAS  PubMed  Google Scholar 

  93. Burton, D. R. & Mascola, J. R. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat. Immunol. 16, 571–576 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Burton, D. R., Poignard, P., Stanfield, R. L. & Wilson, I. A. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 337, 183–186 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Burton, D. R., Stanfield, R. L. & Wilson, I. A. Antibody vs. HIV in a clash of evolutionary titans. Proc. Natl Acad. Sci. USA 102, 14943–14948 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Caskey, M., Klein, F. & Nussenzweig, M. C. Broadly neutralizing antibodies for HIV-1 prevention or immunotherapy. N. Engl. J. Med. 375, 2019–2021 (2016).

    CAS  PubMed  Google Scholar 

  97. Mouquet, H. et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc. Natl Acad. Sci. USA 109, E3268–3277 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. McLellan, J. S. et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480, 336–343 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Julien, J. P. et al. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. PLoS Pathog. 9, e1003342 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Pejchal, R. et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334, 1097–1103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Calarese, D. A. et al. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300, 2065–2071 (2003).

    CAS  PubMed  Google Scholar 

  102. Stanfield, R. L., De Castro, C., Marzaioli, A. M., Wilson, I. A. & Pantophlet, R. Crystal structure of the HIV neutralizing antibody 2G12 in complex with a bacterial oligosaccharide analog of mammalian oligomannose. Glycobiology 25, 412–419 (2015).

    CAS  PubMed  Google Scholar 

  103. Kwong, P. D. et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420, 678–682 (2002).

    CAS  PubMed  Google Scholar 

  104. Lee, J. H. et al. A broadly neutralizing antibody targets the dynamic HIV envelope trimer apex via a long, rigidified, and anionic beta-hairpin structure. Immunity 46, 690–702 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cale, E. M. et al. Virus-like particles identify an HIV V1V2 apex-binding neutralizing antibody that lacks a protruding loop. Immunity 46, 777–791 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang, H. et al. Asymmetric recognition of HIV-1 envelope trimer by V1V2 loop-targeting antibodies. eLife 6, e27389 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Kashyap, A. K. et al. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc. Natl Acad. Sci. USA 105, 5986–5991 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lang, S. et al. Antibody 27F3 broadly targets influenza A group 1 and 2 hemagglutinins through a further variation in VH1–69 antibody orientation on the HA stem. Cell Rep. 20, 2935–2943 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Throsby, M. et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE 3, e3942 (2008).

    PubMed  PubMed Central  Google Scholar 

  111. Lerner, R. A. Rare antibodies from combinatorial libraries suggests an S. O. S. component of the human immunological repertoire. Mol. Biosyst. 7, 1004–1012 (2011).

    CAS  PubMed  Google Scholar 

  112. Lerner, R. A. Combinatorial antibody libraries: new advances, new immunological insights. Nat. Rev. Immunol. 16, 498–508 (2016).

    CAS  PubMed  Google Scholar 

  113. Pallesen, J. et al. Structures of Ebola virus GP and sGP in complex with therapeutic antibodies. Nat. Microbiol. 1, 16128 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. de La Vega, M. A., Wong, G., Kobinger, G. P. & Qiu, X. The multiple roles of sGP in Ebola pathogenesis. Viral Immunol. 28, 3–9 (2015).

    Google Scholar 

  115. Bornholdt, Z. A. et al. Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. Science 351, 1078–1083 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Flyak, A. I. et al. Cross-reactive and potent neutralizing antibody responses in human survivors of natural ebolavirus infection. Cell 164, 392–405 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wilson, J. A. et al. Epitopes involved in antibody-mediated protection from Ebola virus. Science 287, 1664–1666 (2000).

    CAS  PubMed  Google Scholar 

  118. Howell, K. A. et al. Cooperativity enables non-neutralizing antibodies to neutralize ebolavirus. Cell Rep. 19, 413–424 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kwong, P. D. & Mascola, J. R. HIV-1 vaccines based on antibody identification, B cell ontogeny, and epitope structure. Immunity 48, 855–871 (2018).

    CAS  PubMed  Google Scholar 

  120. Flynn, N. M. et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis. 191, 654–665 (2005).

    PubMed  Google Scholar 

  121. Pitisuttithum, P. et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 194, 1661–1671 (2006).

    CAS  PubMed  Google Scholar 

  122. Dolin, R. et al. The safety and immunogenicity of a human immunodeficiency virus type 1 (HIV-1) recombinant gp160 candidate vaccine in humans. NIAID AIDS Vaccine Clinical Trials Network. Ann. Intern. Med. 114, 119–127 (1991).

    CAS  PubMed  Google Scholar 

  123. Cooney, E. L. et al. Safety of and immunological response to a recombinant vaccinia virus vaccine expressing HIV envelope glycoprotein. Lancet 337, 567–572 (1991).

    CAS  PubMed  Google Scholar 

  124. Burton, D. R. et al. HIV vaccine design and the neutralizing antibody problem. Nat. Immunol. 5, 233–236 (2004).

    CAS  PubMed  Google Scholar 

  125. Gonzalez, N. et al. Characterization of broadly neutralizing antibody responses to HIV-1 in a cohort of long term non-progressors. PLoS ONE 13, e0193773 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. Gray, E. S. et al. The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. J. Virol. 85, 4828–4840 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kelsoe, G. & Haynes, B. F. Host controls of HIV broadly neutralizing antibody development. Immunol. Rev. 275, 79–88 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Burton, D. R. et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266, 1024–1027 (1994).

    CAS  PubMed  Google Scholar 

  129. Muster, T. et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol. 67, 6642–6647 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Trkola, A. et al. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70, 1100–1108 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Buchacher, A. et al. Generation of human monoclonal antibodies against HIV-1 proteins; electrofusion and Epstein-Barr virus transformation for peripheral blood lymphocyte immortalization. AIDS Res. Hum. Retrov. 10, 359–369 (1994).

    CAS  Google Scholar 

  132. Binley, J. M. et al. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J. Virol. 74, 627–643 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sanders, R. W. et al. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol. 76, 8875–8889 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Sanders, R. W. et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog. 9, e1003618 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sanders, R. W. & Moore, J. P. Native-like Env trimers as a platform for HIV-1 vaccine design. Immunol. Rev. 275, 161–182 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sanders, R. W., Wilson, I. A. & Moore, J. P. HIV’s Achilles’ heel. Sci. Am. 315, 50–55 (2016).

    CAS  PubMed  Google Scholar 

  137. Torrents de la Pena, A. et al. Improving the immunogenicity of native-like HIV-1 envelope trimers by hyperstabilization. Cell Rep. 20, 1805–1817 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Voss, J. E. et al. Elicitation of neutralizing antibodies targeting the V2 apex of the HIV envelope trimer in a wild-type animal model. Cell Rep. 21, 222–235 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. de Taeye, S. W. et al. Immunogenicity of stabilized HIV-1 envelope trimers with reduced exposure of non-neutralizing epitopes. Cell 163, 1702–1715 (2015).

    PubMed  PubMed Central  Google Scholar 

  140. Kulp, D. W. & Schief, W. R. Advances in structure-based vaccine design. Curr. Opin. Virol. 3, 322–331 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Kulp, D. W. et al. Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. Nat. Commun. 8, 1655 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Correia, B. E. et al. Proof of principle for epitope-focused vaccine design. Nature 507, 201–206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Jardine, J. et al. Rational HIV immunogen design to target specific germline B cell receptors. Science 340, 711–716 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Jardine, J. G. et al. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science 351, 1458–1463 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Jardine, J. G. et al. HIV-1 VACCINES. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science 349, 156–161 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Correia, B. E. et al. Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure 18, 1116–1126 (2010).

    CAS  PubMed  Google Scholar 

  147. McLellan, J. S. et al. Design and characterization of epitope-scaffold immunogens that present the motavizumab epitope from respiratory syncytial virus. J. Mol. Biol. 409, 853–866 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Ofek, G. et al. Elicitation of structure-specific antibodies by epitope scaffolds. Proc. Natl Acad. Sci. USA 107, 17880–17887 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. de Taeye, S. W., Moore, J. P. & Sanders, R. W. HIV-1 Envelope trimer design and immunization strategies to induce broadly neutralizing antibodies. Trends Immunol. 37, 221–232 (2016).

    PubMed  PubMed Central  Google Scholar 

  150. Sanders, R. W. et al. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science 349, aac4223 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. Pauthner, M. et al. Elicitation of robust tier 2 neutralizing antibody responses in nonhuman primates by HIV envelope trimer immunization using optimized approaches. Immunity 46, 1073–1088 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Krammer, F. et al. Assessment of influenza virus hemagglutinin stalk-based immunity in ferrets. J. Virol. 88, 3432–3442 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. Krammer, F. et al. H3 stalk-based chimeric hemagglutinin influenza virus constructs protect mice from H7N9 challenge. J. Virol. 88, 2340–2343 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. Mallajosyula, V. V. et al. Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc. Natl Acad. Sci. USA 111, E2514–E2523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wohlbold, T. J. et al. Vaccination with soluble headless hemagglutinin protects mice from challenge with divergent influenza viruses. Vaccine 33, 3314–3321 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Hai, R. et al. Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J. Virol. 86, 5774–5781 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Goo, L., Chohan, V., Nduati, R. & Overbaugh, J. Early development of broadly neutralizing antibodies in HIV-1-infected infants. Nat. Med. 20, 655–658 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. van den Kerkhof, T. L. et al. Early development of broadly reactive HIV-1 neutralizing activity in elite neutralizers. AIDS 28, 1237–1240 (2014).

    PubMed  Google Scholar 

  159. Sok, D. et al. Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci transgenic mice. Science 353, 1557–1560 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Havenar-Daughton, C. et al. The human naive B cell repertoire contains distinct subclasses for a germline-targeting HIV-1 vaccine immunogen. Sci. Transl Med. 10, eaat0381 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Havenar-Daughton, C., Abbott, R. K., Schief, W. R. & Crotty, S. When designing vaccines, consider the starting material: the human B cell repertoire. Curr. Opin. Immunol. 53, 209–216 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Arnaout, R. et al. High-resolution description of antibody heavy-chain repertoires in humans. PLoS ONE 6, e22365 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. DeKosky, B. J. et al. In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat. Med. 21, 86–91 (2015).

    CAS  PubMed  Google Scholar 

  164. Abbott, R. K. et al. Precursor frequency and affinity determine B cell competitive fitness in germinal centers, tested with germline-targeting HIV vaccine immunogens. Immunity 48, 133–146 (2018).

    CAS  PubMed  Google Scholar 

  165. Havenar-Daughton, C. et al. Direct probing of germinal center responses reveals immunological features and bottlenecks for neutralizing antibody responses to HIV Env trimer. Cell Rep. 17, 2195–2209 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Doria-Rose, N. A. et al. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509, 55–62 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Bonsignori, M. et al. Maturation pathway from germline to broad HIV-1 neutralizer of a CD4-mimic antibody. Cell 165, 449–463 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Rantalainen, K. et al. Co-evolution of HIV envelope and apex-targeting neutralizing antibody lineage provides benchmarks for vaccine design. Cell Rep. 23, 3249–3261 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Landais, E. et al. Broadly neutralizing antibody responses in a large longitudinal Sub-Saharan HIV primary infection cohort. PLoS Pathog. 12, e1005369 (2016).

    PubMed  PubMed Central  Google Scholar 

  170. Landais, E. et al. HIV Envelope glycoform heterogeneity and localized diversity govern the Initiation and maturation of a V2 apex broadly neutralizing antibody lineage. Immunity 47, 990–1003 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Doria-Rose, N. A. et al. New member of the V1V2-directed CAP256-VRC26 lineage that shows increased breadth and exceptional potency. J. Virol. 90, 76–91 (2016).

    CAS  PubMed  Google Scholar 

  172. Dosenovic, P. et al. Immunization for HIV-1 broadly neutralizing antibodies in human Ig knockin mice. Cell 161, 1505–1515 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Escolano, A. et al. Sequential immunization elicits broadly neutralizing anti-HIV-1 antibodies in Ig knockin mice. Cell 166, 1445–1458 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Lee, E. C. et al. Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat. Biotechnol. 32, 356–363 (2014).

    CAS  PubMed  Google Scholar 

  175. Acharya, P. et al. CD4-binding-site recognition by VH1–46 germline-derived HIV-1 neutralizers. AIDS Res. Hum. Retrov. 30, A120–A121 (2014).

    PubMed Central  Google Scholar 

  176. Gorny, M. K. et al. Preferential use of the VH5–51 gene segment by the human immune response to code for antibodies against the V3 domain of HIV-1. Mol. Immunol. 46, 917–926 (2009).

    CAS  PubMed  Google Scholar 

  177. Huang, C. C. et al. Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proc. Natl Acad. Sci. USA 101, 2706–2711 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Baize, S. et al. Emergence of Zaire Ebola virus disease in Guinea. N. Engl. J. Med. 371, 1418–1425 (2014).

    CAS  PubMed  Google Scholar 

  179. Oswald, W. B. et al. Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys. PLoS Pathog. 3, e9 (2007).

    PubMed  PubMed Central  Google Scholar 

  180. Qiu, X. et al. Sustained protection against Ebola virus infection following treatment of infected nonhuman primates with ZMAb. Sci. Rep. 3, 3365 (2013).

    PubMed  PubMed Central  Google Scholar 

  181. Pettitt, J. et al. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci. Transl Med. 5, 199ra113 (2013).

    PubMed  Google Scholar 

  182. Murin, C. D. et al. Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proc. Natl Acad. Sci. USA 111, 17182–17187 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Qiu, X. et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514, 47–53 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Group, P. I. W. et al. A randomized, controlled trial of ZMapp for ebola virus infection. N. Engl. J. Med. 375, 1448–1456 (2016).

    Google Scholar 

  185. Henao-Restrepo, A. M. et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ca Suffit!). Lancet 389, 505–518 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Rimoin, A. W. et al. Ebola virus neutralizing antibodies detectable in survivors of the Yambuku, Zaire outbreak 40 years after infection. J. Infect. Dis. 217, 223–231 (2018).

    CAS  PubMed  Google Scholar 

  187. Pascal, K. E. et al. Development of clinical-stage human monoclonal antibodies that treat advanced Ebola virus disease in non-human primates. J. Infect. Dis. 218, 612–626 (2018).

    Google Scholar 

  188. Misasi, J. et al. Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences. J. Virol. 86, 3284–3292 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Saphire, E. O. et al. Systematic analysis of monoclonal antibodies against Ebola virus GP defines features that contribute to protection. Cell 174, 938–952 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Murphy, A. J. et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. P. Natl Acad. Sci. USA 111, 5153–5158 (2014).

    CAS  Google Scholar 

  191. Beniac, D. R. et al. The organisation of Ebola virus reveals a capacity for extensive, modular polyploidy. PLoS ONE 7, e29608 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Harris, A. et al. Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc. Natl Acad. Sci. USA 103, 19123–19127 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Liu, J., Bartesaghi, A., Borgnia, M. J., Sapiro, G. & Subramaniam, S. Molecular architecture of native HIV-1 gp120 trimers. Nature 455, 109–113 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Liu, J., Wright, E. R. & Winkler, H. 3D visualization of HIV virions by cryoelectron tomography. Method Enzymol. 483, 267–290 (2010).

    CAS  Google Scholar 

  195. Klein, J. S. & Bjorkman, P. J. Few and far between: How HIV may be evading antibody avidity. PLoS Pathog. 6, e1000908 (2010).

    PubMed  PubMed Central  Google Scholar 

  196. Galimidi, R. P. et al. Intra-spike crosslinking overcomes antibody evasion by HIV-1. Cell 160, 433–446 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Walker, L. M. et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Scheid, J. F. et al. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458, 636–640 (2009).

    CAS  PubMed  Google Scholar 

  199. Simek, M. D. et al. Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J. Virol. 83, 7337–7348 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Walker, L. M. et al. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Cirelli, K. M. & Crotty, S. Germinal center enhancement by extended antigen availability. Curr. Opin. Immunol. 47, 64–69 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Crotty, S. Raging evolution of a B cell response to a viral infection. Nat. Rev. Immunol. 18, 79 (2018).

    CAS  PubMed  Google Scholar 

  203. Horwitz, J. A. et al. Non-neutralizing antibodies alter the course of HIV-1 infection in vivo. Cell 170, 637–648 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Mayr, L., Su, B. & Moog, C. Role of non-neutralizing antibodies in vaccines and/or HIV infected individuals. Curr. Opin. HIV AIDS 12, 209–215 (2017).

    CAS  PubMed  Google Scholar 

  205. Forthal, D., Hope, T. J. & Alter, G. New paradigms for functional HIV-specific non-neutralizing antibodies. Curr. Opin. HIV AIDS 8, 393–401 (2013).

    PubMed  PubMed Central  Google Scholar 

  206. Kajihara, M. et al. Inhibition of Marburg virus budding by non-neutralizing antibodies to the envelope glycoprotein. J. Virol. 86, 13467–13474 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Bournazos, S. et al. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell 158, 1243–1253 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Bournazos, S. & Ravetch, J. V. Anti-retroviral antibody FcγR-mediated effector functions. Immunol. Rev. 275, 285–295 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Bournazos, S. & Ravetch, J. V. Fcγ receptor function and the design of vaccination strategies. Immunity 47, 224–233 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors: old friends and new family members. Immunity 24, 19–28 (2006).

    CAS  PubMed  Google Scholar 

  211. Nimmerjahn, F. & Ravetch, J. V. Fc-receptors as regulators of immunity. Adv. Immunol. 96, 179–204 (2007).

    CAS  PubMed  Google Scholar 

  212. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    CAS  PubMed  Google Scholar 

  213. Pelegrin, M., Naranjo-Gomez, M. & Piechaczyk, M. Antiviral monoclonal antibodies: can they be more than simple neutralizing agents? Trends Microbiol. 23, 653–665 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (grant no. NIAID UM1AI100663), the Viral Hemorrhagic Fever Immunotherapeutic Consortium (grant no. U19 AI109762), NIH (grant no. R56 AI127371), the Bill & Melinda Gates Collaboration for AIDS Vaccine Discovery (grant no. OPP1084519) and the International AIDS Vaccine Initiative.

Author information

Authors and Affiliations

Authors

Contributions

C. D. M. wrote the initial draft; C. D. M., I. A. W. and A. B. W. wrote, reviewed and edited the Review.

Corresponding author

Correspondence to Andrew B. Ward.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murin, C.D., Wilson, I.A. & Ward, A.B. Antibody responses to viral infections: a structural perspective across three different enveloped viruses. Nat Microbiol 4, 734–747 (2019). https://doi.org/10.1038/s41564-019-0392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0392-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing