Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements

Abstract

Prokaryotes have the ability to walk on surfaces using type IV pili (TFP), a motility mechanism known as twitching1,2. Molecular motors drive TFP extension and retraction, but whether and how these movements are coordinated is unknown3. Here, we reveal how the pathogen Pseudomonas aeruginosa coordinates the motorized activity of TFP to power efficient surface motility. To do this, we dynamically visualized TFP extension, attachment and retraction events at high resolution in four dimensions using label-free interferometric scattering microscopy (iSCAT)4. By measuring TFP dynamics, we found that the retraction motor PilT was sufficient to generate tension and power motility in free solution, while its partner ATPase PilU may improve retraction only in high-friction environments. Using precise timing of successive attachment and retraction, we show that P. aeruginosa engages PilT motors very rapidly and almost only when TFP encounter the surface, suggesting contact sensing. Finally, measurements of TFP dwell times on surfaces show that tension reinforced the adhesion strength to the surface of individual pili, thereby increasing effective pulling time during retraction. The successive control of TFP extension, attachment, retraction and detachment suggests that sequential control of motility machinery is a conserved strategy for optimized locomotion across domains of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: iSCAT reveals extracellular bacterial filaments.
Fig. 2: Visualization of TFP position and retraction in three dimensions.
Fig. 3: PilU does not affect TFP dynamics in free solution.
Fig. 4: Coordination of TFP retraction motors.

Similar content being viewed by others

Code availability

All codes are available from the corresponding author upon reasonable request.

Data availability

All data are available from the corresponding author upon reasonable request.

References

  1. Gibiansky, M. L. et al. Bacteria use type iv pili to walk upright and detach from surfaces. Science 330, 197 (2010).

    Article  CAS  Google Scholar 

  2. Mattick, J. S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56, 289–314 (2002).

    Article  CAS  Google Scholar 

  3. Chang, Y. W. et al. Architecture of the type IVa pilus machine. Science 351, aad2001 (2016).

    Article  Google Scholar 

  4. Ortega-Arroyo, J., Cole, D. & Kukura, P. Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging. Nat. Protoc. 11, 617–633 (2016).

    Article  CAS  Google Scholar 

  5. Costa, T. R. D. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

    Article  CAS  Google Scholar 

  6. Persat, A. Bacterial mechanotransduction. Curr. Opin. Microbiol. 36, 1–6 (2017).

    Article  CAS  Google Scholar 

  7. Burrows, L. L. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu. Rev. Microbiol. 66, 493–520 (2012).

    Article  CAS  Google Scholar 

  8. Persat, A., Inclan, Y. F., Engel, J. N., Stone, H. A. & Gitai, Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 112, 7563–7568 (2015).

    Article  CAS  Google Scholar 

  9. Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility. Nature 407, 98–102 (2000).

    Article  CAS  Google Scholar 

  10. Maier, B., Potter, L., So, M., Seifert, H. S. & Sheetz, M. P. Single pilus motor forces exceed 100 pN. Proc. Natl Acad. Sci. USA 99, 16012–16017 (2002).

    Article  CAS  Google Scholar 

  11. Beaussart, A. et al. Nanoscale adhesion forces of Pseudomonas aeruginosa type IV pili. ACS Nano. 8, 10723–10733 (2014).

    Article  CAS  Google Scholar 

  12. Jin, F., Conrad, J. C., Gibiansky, M. L. & Wong, G. C. L. Bacteria use type-IV pili to slingshot on surfaces. Proc. Natl Acad. Sci. USA 108, 12617–12622 (2011).

    Article  CAS  Google Scholar 

  13. Skerker, J. M. & Berg, H. C. Direct observation of extension and retraction of type IV pili. Proc. Natl Acad. Sci. USA 98, 6901–6904 (2001).

    Article  CAS  Google Scholar 

  14. Ellison, C. K. et al. Obstruction of pilus retraction stimulates bacterial surface sensing. Science 358, 535–538 (2017).

    Article  CAS  Google Scholar 

  15. Ortega Arroyo, J. et al. Label-free, all-optical detection, imaging, and tracking of a single protein. Nano. Lett. 14, 2065–2070 (2014).

    Article  CAS  Google Scholar 

  16. Kukura, P. et al. High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6, 923–927 (2009).

    Article  CAS  Google Scholar 

  17. Ping, L., Birkenbeil, J. & Monajembashi, S. Swimming behavior of the monotrichous bacterium Pseudomonas fluorescens SBW25. FEMS Microbiol. Ecol. 86, 36–44 (2013).

    Article  CAS  Google Scholar 

  18. Ortega-Arroyo, J. & Kukura, P. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys. Chem. Chem. Phys. 14, 15625 (2012).

    Article  CAS  Google Scholar 

  19. Krishnan, M., Mojarad, N., Kukura, P. & Sandoghdar, V. Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467, 692–695 (2010).

    Article  CAS  Google Scholar 

  20. Bertrand, J. J., West, J. T. & Engel, J. N. Genetic analysis of the regulation of type IV pilus function by the Chp chemosensory system of Pseudomonas aeruginosa. J. Bacteriol. 192, 994–1010 (2010).

    Article  CAS  Google Scholar 

  21. Whitchurch, C. B. & Mattick, J. S. Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa. Mol. Microbiol. 13, 1079–1091 (1994).

    Article  CAS  Google Scholar 

  22. Park, H.-S. M., Wolfgang, M. & Koomey, M. Modification of Type IV pilus-associated epithelial cell adherence and multicellular behavior by the pilu protein of Neisseria gonorrhoeae. Infect. Immun. 70, 3891–3903 (2002).

    Article  CAS  Google Scholar 

  23. Kuchma, S. L. et al. Cyclic Di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator. J. Bacteriol. 197, 420–430 (2015).

    Article  CAS  Google Scholar 

  24. Chiang, P., Habash, M. & Burrows, L. L. Disparate subcellular localization patterns of Pseudomonas aeruginosa type iv pilus atpases involved in twitching motility. J. Bacteriol. 187, 829–839 (2005).

    Article  CAS  Google Scholar 

  25. Giltner, C. L., Nguyen, Y. & Burrows, L. L. Type IV pilin proteins: versatile molecular modules. Microbiol. Mol. Biol. Rev. 76, 740–772 (2012).

    Article  CAS  Google Scholar 

  26. Thomas, W. E., Vogel, V. & Sokurenko, E. Biophysics of catch bonds. Annu. Rev. Biophys. 37, 399–416 (2008).

    Article  CAS  Google Scholar 

  27. Biais, N., Higashi, D. L., Brujic, J., So, M. & Sheetz, M. P. Force-dependent polymorphism in type IV pili reveals hidden epitopes. Proc. Natl Acad. Sci. USA 107, 11358–11363 (2010).

    Article  CAS  Google Scholar 

  28. Kiehn, O. Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 17, 224–238 (2016).

    Article  CAS  Google Scholar 

  29. Dietz, V. Proprioception and locomotor disorders. Nat. Rev. Neurosci. 3, 781–790 (2002).

    Article  CAS  Google Scholar 

  30. Persat, A. et al. The mechanical world of bacteria. Cell 161, 988–997 (2015).

    Article  CAS  Google Scholar 

  31. Hmelo, L. R. et al. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat. Protoc. 10, 1820–41 (2015).

    Article  CAS  Google Scholar 

  32. Young, G. et al. Quantitative mass imaging of single biological macromolecules. Science 360, 423–427 (2018).

    Article  CAS  Google Scholar 

  33. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Andrecka for valuable discussions on iSCAT, J. Engel and Y. Inclan for strains and plasmids and Z. Al-Mayyah for help with generating one mutant strain. L.T. and A.P. thank the Swiss National Foundation for funding this work through Projects (grant No. 31003A_169377) and the Gabriella Giorgi-Cavaglieri Foundation.

Author information

Authors and Affiliations

Authors

Contributions

L.T. and A.P conceptualized the study and performed experiments and data analysis. L.T., A.F. and P.K. implemented and adapted the iSCAT microscope for live-cell imaging. L.T., P.K and A.P. wrote the manuscript.

Corresponding author

Correspondence to Alexandre Persat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7 and Supplementary Video Legends.

Reporting Summary

Supplementary Video 1

iSCAT visualization of a twitching WT cell.

Supplementary Video 2

iSCAT visualization of a twitching fliC cell.

Supplementary Video 3

iSCAT visualization of the fliC mutant.

Supplementary Video 4

iSCAT visualization of the pilTU fliC mutant.

Supplementary Video 5

iSCAT visualization of the retraction motor mutant pilT fliC.

Supplementary Video 6

iSCAT visualization of the retraction motor mutant pilU fliC.

Supplementary Video 7

iSCAT visualization of a twitching pilU fliC cell.

Supplementary Video 8

Visualization of twitching motility in high friction environment highlights a function for PilU in force generation.

Supplementary Video 9

iSCAT visualization of extension, attachment and retraction of a TFP.

Supplementary Video 10

iSCAT visualization of extension, attachment and retraction of a TFP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talà, L., Fineberg, A., Kukura, P. et al. Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements. Nat Microbiol 4, 774–780 (2019). https://doi.org/10.1038/s41564-019-0378-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0378-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing