Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Divergent rRNAs as regulators of gene expression at the ribosome level

Abstract

It is generally assumed that each organism has evolved to possess a unique ribosomal RNA (rRNA) species optimal for its physiological needs. However, some organisms express divergent rRNAs, the functional roles of which remain unknown. Here, we show that ribosomes containing the most variable rRNAs, encoded by the rrnI operon (herein designated as I-ribosomes), direct the preferential translation of a subset of mRNAs in Vibrio vulnificus, enabling the rapid adaptation of bacteria to temperature and nutrient shifts. In addition, genetic and functional analyses of I-ribosomes and target mRNAs suggest that both I-ribosomal subunits are required for the preferential translation of specific mRNAs, the Shine–Dalgarno sequences of which do not play a critical role in I-ribosome binding. This study identifies genome-encoded divergent rRNAs as regulators of gene expression at the ribosome level, providing an additional level of regulation of gene expression in bacteria in response to environmental changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of mRNAs with rrnI-dependent expression.
Fig. 2: rrnI-dependent expression of hspA.
Fig. 3: rrnI-dependent expression of tpiA and phenotypic changes in V. vulnificus.
Fig. 4: Effect of rrnI deletion on the virulence of V. vulnificus in mice.
Fig. 5: Identification of variable residues in I-rRNAs associated with rrnI-dependent expression of hspA mRNAs.
Fig. 6: Characterization of I-ribosome-mediated preferential mRNA selection.

Similar content being viewed by others

Data availability

Ribosome profiling and transcriptome data have been deposited into the Gene Expression Ominbus (GEO) and are available under identifier GSE111991. Proteome data have been deposited into PRIDE and are available via ProteomeXchange under identifier PXD009215.

References

  1. Noller, H. F. Evolution of protein synthesis from an RNA world. Cold Spring Harb. Perspect. Biol. 4, a003681 (2012).

    Article  Google Scholar 

  2. Klappenbach, J. A., Saxman, P. R., Cole, J. R. & Schmidt, T. M. rrndb: the Ribosomal RNA Operon Copy Number Database. Nucleic Acids Res. 29, 181–184 (2001).

    Article  CAS  Google Scholar 

  3. Long, E. O. & Dawid, I. B. Repeated genes in eukaryotes. Annu. Rev. Biochem. 49, 727–764 (1980).

    Article  CAS  Google Scholar 

  4. Hashimoto, J. G., Stevenson, B. S. & Schmidt, T. M. Rates and consequences of recombination between rRNA operons. J. Bacteriol. 185, 966–972 (2003).

    Article  CAS  Google Scholar 

  5. Boucher, Y., Douady, C. J., Sharma, A. K., Kamekura, M. & Doolittle, W. F. Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J. Bacteriol. 186, 3980–3990 (2004).

    Article  CAS  Google Scholar 

  6. Carranza, S., Giribet, G., Ribera, C., Baguna & Riutort, M. Evidence that two types of 18S rDNA coexist in the genome of Dugesia (Schmidtea) mediterranea (Platyhelminthes, Turbellaria, Tricladida). Mol. Biol. Evol. 13, 824–832 (1996).

    Article  CAS  Google Scholar 

  7. Gunderson, J. H. et al. Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238, 933–937 (1987).

    Article  CAS  Google Scholar 

  8. Kim, H. L. et al. Expression of divergent LSU rRNA genes in the Vibrio vulnificus CMCP6 genome during both infection and non-pathogenic stages. Curr. Microbiol. 62, 133–138 (2011).

    Article  CAS  Google Scholar 

  9. Mashkova, T. D. et al. The primary structure of oocyte and somatic 5S rRNAs from the loach Misgurnus fossilis. Nucleic Acids Res. 9, 2141–2151 (1981).

    Article  CAS  Google Scholar 

  10. Parks, M. M. et al. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci. Adv. 4, eaao0665 (2018).

    Article  Google Scholar 

  11. Wang, Y., Zhang, Z. & Ramanan, N. The actinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J. Bacteriol. 179, 3270–3276 (1997).

    Article  CAS  Google Scholar 

  12. Yap, W. H., Zhang, Z. & Wang, Y. Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J. Bacteriol. 181, 5201–5209 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Locati, M. D. et al. Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development. RNA 23, 1188–1199 (2017).

    Article  CAS  Google Scholar 

  14. Pei, A. Y. et al. Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl. Environ. Microbiol. 76, 3886–3897 (2010).

    Article  CAS  Google Scholar 

  15. Vetrovsky, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8, e57923 (2013).

    Article  CAS  Google Scholar 

  16. Waters, A. P., Syin, C. & McCutchan, T. F. Developmental regulation of stage-specific ribosome populations in Plasmodium. Nature 342, 438–440 (1989).

    Article  CAS  Google Scholar 

  17. Velichutina, I. V., Rogers, M. J., McCutchan, T. F. & Liebman, S. W. Chimeric rRNAs containing the GTPase centers of the developmentally regulated ribosomal rRNAs of Plasmodium falciparum are functionally distinct. RNA 4, 594–602 (1998).

    Article  CAS  Google Scholar 

  18. van Spaendonk, R. M. et al. Functional equivalence of structurally distinct ribosomes in the malaria parasite, Plasmodium berghei. J. Biol. Chem. 276, 22638–22647 (2001).

    Article  Google Scholar 

  19. Lopez-Lopez, A., Benlloch, S., Bonfa, M., Rodriguez-Valera, F. & Mira, A. Intragenomic 16S rDNA divergence in Haloarcula marismortui is an adaptation to different temperatures. J. Mol. Evol. 65, 687–696 (2007).

    Article  CAS  Google Scholar 

  20. Sato, Y., Fujiwara, T. & Kimura, H. Expression and function of different guanine-plus-cytosine content 16S rRNA genes in Haloarcula hispanica at different temperatures. Front. Microbiol. 8, 482 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Kurylo, C. M. et al. Endogenous rRNA sequence variation can regulate stress response gene expression and phenotype. Cell Rep. 25, 236–248 (2018).

    Article  CAS  Google Scholar 

  22. Zhang, J. J., Zhang, Y. L., Zhu, L., Suzuki, M. & Inouye, M. Interference of mRNA function by sequence-specific endoribonuclease PemK. J. Biol. Chem. 279, 20678–20684 (2004).

    Article  CAS  Google Scholar 

  23. Shine, J. & Dalgarno, L. The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl Acad. Sci. USA 71, 1342–1346 (1974).

    Article  CAS  Google Scholar 

  24. Vesper, O. et al. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 147, 147–157 (2011).

    Article  CAS  Google Scholar 

  25. Culviner, P. H. & Laub, M. T. Global analysis of the E. coli toxin MazF reveals widespread cleavage of mRNA and the inhibition of rRNA maturation and ribosome biogenesis. Mol. Cell 70, 868–880 (2018).

    Article  CAS  Google Scholar 

  26. Mets, T. et al. Fragmentation of Escherichia coli mRNA by MazF and MqsR. Biochimie 156, 79–91 (2018).

    Article  Google Scholar 

  27. Tock, M. R., Walsh, A. P., Carroll, G. & McDowall, K. J. The CafA protein required for the 5′-maturation of 16 S rRNA is a 5′-end-dependent ribonuclease that has context-dependent broad sequence specificity. J. Biol. Chem. 275, 8726–8732 (2000).

    Article  CAS  Google Scholar 

  28. Song, W. et al. Antibiotic stress-induced modulation of the endoribonucleolytic activity of RNase III and RNase G confers resistance to aminoglycoside antibiotics in Escherichia coli. Nucleic Acids Res. 42, 4669–4681 (2014).

    Article  CAS  Google Scholar 

  29. Byrgazov, K., Vesper, O. & Moll, I. Ribosome heterogeneity: another level of complexity in bacterial translation regulation. Curr. Opin. Microbiol. 16, 133–139 (2013).

    Article  CAS  Google Scholar 

  30. Simsek, D. & Barna, M. An emerging role for the ribosome as a nexus for post-translational modifications. Curr. Opin. Cell Biol. 45, 92–101 (2017).

    Article  CAS  Google Scholar 

  31. Xue, S. & Barna, M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat. Rev. Mol. Cell Biol. 13, 355–369 (2012).

    Article  CAS  Google Scholar 

  32. Thomas, J. G. & Baneyx, F. Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG in vivo. J. Bacteriol. 180, 5165–5172 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Albery, W. J. & Knowles, J. R. Free-energy profile of the reaction catalyzed by triosephosphate isomerase. Biochemistry 15, 5627–5631 (1976).

    Article  CAS  Google Scholar 

  34. Knowles, J. R. Enzyme catalysis: not different, just better. Nature 350, 121–124 (1991).

    Article  CAS  Google Scholar 

  35. Elmahdi, S., DaSilva, L. V. & Parveen, S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: a review. Food Microbiol. 57, 128–134 (2016).

    Article  CAS  Google Scholar 

  36. Horseman, M. A. & Surani, S. A comprehensive review of Vibrio vulnificus: an important cause of severe sepsis and skin and soft-tissue infection. Int. J. Infect. Dis. 15, e157–e166 (2011).

    Article  Google Scholar 

  37. Lee, K., Varma, S., SantaLucia, J. Jr & Cunningham, P. R. In vivo determination of RNA structure–function relationships: analysis of the 790 loop in ribosomal RNA. J. Mol. Biol. 269, 732–743 (1997).

    Article  CAS  Google Scholar 

  38. Orelle, C. et al. Protein synthesis by ribosomes with tethered subunits. Nature 524, 119–124 (2015).

    Article  CAS  Google Scholar 

  39. Moll, I., Hirokawa, G., Kiel, M. C., Kaji, A. & Blasi, U. Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. Nucleic Acids Res. 32, 3354–3363 (2004).

    Article  CAS  Google Scholar 

  40. Karamyshev, A. L., Karamysheva, Z. N., Yamami, T., Ito, K. & Nakamura, Y. Transient idling of posttermination ribosomes ready to reinitiate protein synthesis. Biochimie 86, 933–938 (2004).

    Article  CAS  Google Scholar 

  41. Blomfield, I. C., Vaughn, V., Rest, R. F. & Eisenstein, B. I. Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol. Microbiol. 5, 1447–1457 (1991).

    Article  CAS  Google Scholar 

  42. Higuchi, R. in PCR Technology: Principles and Applications for DNA Amplification (ed. Erlich, H.A.) Ch. 6 (Palgrave Macmillan, London, 1989).

  43. Moazed, D., Stern, S. & Noller, H. F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J. Mol. Biol. 187, 399–416 (1986).

    Article  CAS  Google Scholar 

  44. Powers, T. & Noller, H. F. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 10, 2203–2214 (1991).

    Article  CAS  Google Scholar 

  45. Ingolia, N. T. Genome-wide translational profiling by ribosome footprinting. Methods Enzymol. 470, 119–142 (2010).

    Article  CAS  Google Scholar 

  46. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  47. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  Google Scholar 

  48. Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A. & Conesa, A. Differential expression in RNA-seq: a matter of depth. Genome Res. 21, 2213–2223 (2011).

    Article  CAS  Google Scholar 

  49. Nagaraj, N. et al. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Mol. Cell. Proteomics 11, M111.013722 (2012).

    Article  Google Scholar 

  50. Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article  CAS  Google Scholar 

  51. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  Google Scholar 

  52. Wisniewski, J. R., Zougman, A. & Mann, M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J. Proteome Res. 8, 5674–5678 (2009).

    Article  CAS  Google Scholar 

  53. Bekker-Jensen, D. B. et al. An optimized shotgun strategy for the rapid generation of comprehensive human proteomes. Cell Syst. 4, 587–599 (2017).

    Article  CAS  Google Scholar 

  54. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  55. Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  Google Scholar 

  56. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  CAS  Google Scholar 

  57. Bassler, B. L., Wright, M., Showalter, R. E. & Silverman, M. R. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol. Microbiol. 9, 773–786 (1993).

    Article  CAS  Google Scholar 

  58. Amarasinghe, A. K., Calin-Jageman, I., Harmouch, A., Sun, W. & Nicholson, A. W. Escherichia coli ribonuclease III: affinity purification of hexahistidine-tagged enzyme and assays for substrate binding and cleavage. Methods Enzymol. 342, 143–158 (2001).

    Article  CAS  Google Scholar 

  59. Totemeyer, S., Booth, N. A., Nichols, W. W., Dunbar, B. & Booth, I. R. From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol. Microbiol. 27, 553–562 (1998).

    Article  CAS  Google Scholar 

  60. Heo, J. et al. RraAS2 requires both scaffold domains of RNase ES for high-affinity binding and inhibitory action on the ribonucleolytic activity. J. Microbiol. 54, 660–666 (2016).

    Article  CAS  Google Scholar 

  61. Lenz, D. H. et al. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118, 69–82 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K.-H. Lee, Y. Lee and S. N. Cohen for helpful comments. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (grant no. 2018R1A5A1025077 and 2017R1A2B2011008 to K.L.; grant no. 2015R1A5A1008958 to J.B. and H.-K.C.; grant no. 2017R1D1A1B03032197 to W.S.; and grant no. 2018R1D1A1B07050434 to J.-H.Y.).

Author information

Authors and Affiliations

Authors

Contributions

W.S., M.J., J.-H.Y., E.S., M.L., Y.-I.K. and R.S. performed the experiments. Y.H., H.-K.C., J.H., J.E.L., C.J.M., Y.-H.K., S.E., Y.H., J.B. and K.L. analysed and interpreted the data. W.S., M.J., J.-H.Y., E.S., M.L., J.B. and K.L. wrote and reviewed the manuscript. J.B. and K.L designed the study, developed the methodology and supervised the study. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jeehyeon Bae or Kangseok Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Supplementary Table 1, Supplementary Tables 3–8, Supplementary Discussion, Supplementary References.

Reporting Summary

Supplementary Table 2

List of genes obtained from ribosome profiling and transcriptome data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Joo, M., Yeom, JH. et al. Divergent rRNAs as regulators of gene expression at the ribosome level. Nat Microbiol 4, 515–526 (2019). https://doi.org/10.1038/s41564-018-0341-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0341-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing