Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Pseudogene repair driven by selection pressure applied in experimental evolution

Abstract

Pseudogenes represent open reading frames that have been damaged by mutations, rendering the gene product non-functional. Pseudogenes are found in many genomes and are not always eliminated, even if they are potentially ‘wasteful’. This raises a fundamental question about their prevalence. Here we report pseudogene efeU repair that restores the iron uptake system of Escherichia coli under a designed selection pressure during adaptive laboratory evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The fragmentation and repair of efeU.
Fig. 2: Mutations in efeU acquired during ALE.

Similar content being viewed by others

Code availability

All code used to analyse the data is available at https://github.com/SBRG/mutation_analysis.

Data availability

DNA sequencing data from this study are available from the Sequence Read Archive database (SRA accession PRJNA505542). RNA sequencing data from this study are available from the Gene Expression Omnibus database under the accession number GSE122779.

References

  1. Ratledge, C. & Dover, L. G. Annu. Rev. Microbiol. 54, 881–941 (2000).

    Article  CAS  Google Scholar 

  2. Pi, H. & Helmann, J. D. Proc. Natl Acad. Sci. USA 114, 12785–12790 (2017).

    Article  CAS  Google Scholar 

  3. Grosse, C. et al. Mol. Microbiol. 62, 120–131 (2006).

    Article  CAS  Google Scholar 

  4. Wattam, A. R. et al. Nucleic Acids Res. 45, D535–D542 (2017).

    Article  CAS  Google Scholar 

  5. Conrad, T. M., Lewis, N. E. & Palsson, B. Ø. Mol. Syst. Biol. 7, 509 (2011).

    Article  Google Scholar 

  6. Sandberg, T. E. et al. PLoS ONE 11, e0151130 (2016).

    Article  Google Scholar 

  7. Zhou, K., Aertsen, A. & Michiels, C. W. FEMS Microbiol. Rev. 38, 119–141 (2014).

    Article  CAS  Google Scholar 

  8. Miethke, M., Monteferrante, C. G., Marahiel, M. A. & van Dijl, J. M. Biochim. Biophys. Acta 1833, 2267–2278 (2013).

    Article  CAS  Google Scholar 

  9. Seo, S. W. et al. Nat. Commun. 5, 4910 (2014).

    Article  CAS  Google Scholar 

  10. Tutar, Y. Comp. Funct. Genomics 2012, 424526 (2012).

    Article  Google Scholar 

  11. Kuo, C. H. & Ochman, H. PLoS Genet. 6, e1001050 (2010).

    Article  Google Scholar 

  12. Lawrence, J. G., Hendrix, R. W. & Casjens, S. Trends Microbiol. 9, 535–540 (2001).

    Article  CAS  Google Scholar 

  13. Mira, A., Ochman, H. & Moran, N. A. Trends Genet. 17, 589–596 (2001).

    Article  CAS  Google Scholar 

  14. Thomason, L. C., Costantino, N. & Court, D. L. Curr. Protoc. Mol. Biol. 79, 1.17.1–1.17.8 (2007).

    Article  Google Scholar 

  15. Baba, T. et al. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  Google Scholar 

  16. Datsenko, K. A. & Wanner, B. L. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  17. Zhou, K. et al. Int. J. Antimicrob. Agents 51, 822–828 (2018).

    Article  CAS  Google Scholar 

  18. Fay, M. P. Biostatistics 11, 373–374 (2010).

    Article  Google Scholar 

  19. Katoh, K., Rozewicki, J. & Yamada, K. D. Brief. Bioinform. https://doi.org/10.1093/bib/bbx108 (2017).

  20. Touchon, M. et al. PLoS Genet. 5, e1000344 (2009).

    Article  Google Scholar 

  21. Rambaut, A. FigTree v1.4.3 (Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, 2018); http://tree.bio.ed.ac.uk/software/figtree/

  22. Fleming, T. P., Nahlik, M. S. & McIntosh, M. A. J. Bacteriol. 156, 1171–1177 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, S. et al. BMC Bioinform. 18, 80 (2017).

    Article  Google Scholar 

  24. Deatherage, D. E. & Barrick, J. E. Methods Mol. Biol. 1151, 165–188 (2014).

    Article  CAS  Google Scholar 

  25. Phaneuf, P. Zenodo v.1.4.1 (Zenodo, San Diego, 2018); https://doi.org/10.5281/zenodo.1301237

  26. Phaneuf, P. V., Gosting, D., Palsson, B. & Feist, A. Preprint at bioRxiv (2018); https://www.biorxiv.org/content/biorxiv/early/2018/05/15/320747.full.pdf

  27. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Genome. Biol. 10, R25 (2009).

    Article  Google Scholar 

  28. Lawrence, M. et al. PLoS Comput. Biol. 9, e1003118 (2013).

    Article  CAS  Google Scholar 

  29. Love, M. I., Huber, W. & Anders, S. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  30. Yang, J. et al. Nat. Methods 12, 7–8 (2015).

    Article  CAS  Google Scholar 

  31. Roy, A., Kucukural, A. & Zhang, Y. Nat. Protoc. 5, 725–738 (2010).

    Article  CAS  Google Scholar 

  32. Zhang, Y. BMC Bioinform. 9, 40 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Novo Nordisk Foundation under grant number NNF10CC1016517.

Author information

Authors and Affiliations

Authors

Contributions

A.A., A.M.F. and B.O.P. designed the study. A.A., C.A.O., S.X., Y.H. and R.S. performed the experiments. A.A., L.Y., A.V.S., C.A.O., E.C. and T.E.S. analysed the data. K.S.C. and P.V.P. contributed analysis tools. A.A. and B.O.P. wrote the manuscript.

Corresponding author

Correspondence to Bernhard O. Palsson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Tables 1–6 and Supplementary References.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, A., Olson, C.A., Yang, L. et al. Pseudogene repair driven by selection pressure applied in experimental evolution. Nat Microbiol 4, 386–389 (2019). https://doi.org/10.1038/s41564-018-0340-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0340-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing