Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2

Abstract

Enterovirus 71 (EV71) is a common cause of hand, foot and mouth disease—a disease endemic especially in the Asia-Pacific region1. Scavenger receptor class B member 2 (SCARB2) is the major receptor of EV71, as well as several other enteroviruses responsible for hand, foot and mouth disease, and plays a key role in cell entry2. The isolated structures of EV71 and SCARB2 are known3,4,5,6, but how they interact to initiate infection is not. Here, we report the EV71–SCARB2 complex structure determined at 3.4 Å resolution using cryo-electron microscopy. This reveals that SCARB2 binds EV71 on the southern rim of the canyon, rather than across the canyon, as predicted3,7,8. Helices 152–163 (α5) and 183–193 (α7) of SCARB2 and the viral protein 1 (VP1) GH and VP2 EF loops of EV71 dominate the interaction, suggesting an allosteric mechanism by which receptor binding might facilitate the low-pH uncoating of the virus in the endosome/lysosome. Remarkably, many residues within the binding footprint are not conserved across SCARB2-dependent enteroviruses; however, a conserved proline and glycine seem to be key residues. Thus, although the virus maintains antigenic variability even within the receptor-binding footprint, the identification of binding ‘hot spots’ may facilitate the design of receptor mimic therapeutics less likely to quickly generate resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogeny and the quality of the EV71–SCARB2 EM structure.
Fig. 2: Complex formation of EV71 and SCARB2.
Fig. 3: Details of EV71 and SCARB2 interactions.
Fig. 4: Epitopes of neutralizing antibodies and mechanism of uncoating.

Similar content being viewed by others

Data availability

The structure of the EV71-SCARB2 complex is available from the PDB (accession code 6I2K). The map is available from Electron Microscopy Data Bank (accession code EMD-0332).

References

  1. Liu, S. L. et al. Comparative epidemiology and virology of fatal and nonfatal cases of hand, foot and mouth disease in mainland China from 2008 to 2014. Rev. Med. Virol. 25, 115–128 (2015).

    Article  Google Scholar 

  2. Yamayoshi, S. et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat. Med. 15, 798–801 (2009).

    Article  CAS  Google Scholar 

  3. Dang, M. et al. Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71. Protein Cell 5, 692–703 (2014).

    Article  CAS  Google Scholar 

  4. Neculai, D. et al. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature 504, 172–176 (2013).

    Article  CAS  Google Scholar 

  5. Wang, X. et al. A sensor–adaptor mechanism for enterovirus uncoating from structures of EV71. Nat. Struct. Mol. Biol. 19, 424–429 (2012).

    Article  CAS  Google Scholar 

  6. Zhao, Y., Ren, J., Padilla-Parra, S., Fry, E. E. & Stuart, D. I. Lysosome sorting of β-glucocerebrosidase by LIMP-2 is targeted by the mannose 6-phosphate receptor. Nat. Commun. 5, 4321 (2014).

    Article  CAS  Google Scholar 

  7. Chen, P. et al. Molecular determinants of enterovirus 71 viral entry: cleft around GLN-172 on VP1 protein interacts with variable region on scavenge receptor B 2. J. Biol. Chem. 287, 6406–6420 (2012).

    Article  CAS  Google Scholar 

  8. Zhang, X. et al. The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection. Protein Cell 8, 590–600 (2017).

    Article  CAS  Google Scholar 

  9. Wu, J. S. et al. Patterns of polymorphism and divergence in the VP1 gene of enterovirus 71 circulating in the Asia-Pacific region between 1994 and 2013. J. Virol. Methods 193, 713–728 (2013).

    Article  CAS  Google Scholar 

  10. Pallansch, M. A. & Roos, R. in Enteroviruses: Polioviruses, Coxsackieviruses, Echoviruses, and Newer Enteroviruses 5th edn 839–893 (Lippincott Williams & Wilkins, Philadelphia, 2007).

  11. Ren, J. et al. Picornavirus uncoating intermediate captured in atomic detail. Nat. Commun. 4, 1929 (2013).

    Article  Google Scholar 

  12. Tuthill, T. J., Groppelli, E., Hogle, J. M. & Rowlands, D. J. Picornaviruses. Curr. Top. Microbiol. Immunol. 343, 43–89 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ren, R. B., Costantini, F., Gorgacz, E. J., Lee, J. J. & Racaniello, V. R. Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63, 353–362 (1990).

    Article  CAS  Google Scholar 

  14. Yamayoshi, S. & Koike, S. Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. J. Virol. 85, 4937–4946 (2011).

    Article  CAS  Google Scholar 

  15. Staring, J. et al. KREMEN1 is a host entry receptor for a major group of enteroviruses. Cell Host Microbe 23, 636–643 (2018).

    Article  CAS  Google Scholar 

  16. Baggen, J., Thibaut, H. J., Strating, J. & van Kuppeveld, F. J. M. The life cycle of non-polio enteroviruses and how to target it. Nat. Rev. Microbiol. 16, 368–381 (2018).

    Article  CAS  Google Scholar 

  17. Rossmann, M. G. et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145–153 (1985).

    Article  CAS  Google Scholar 

  18. Calvo, D., Dopazo, J. & Vega, M. A. The CD36, CLA-1 (CD36L1), and LIMPII (CD36L2) gene family: cellular distribution, chromosomal location, and genetic evolution. Genomics 25, 100–106 (1995).

    Article  CAS  Google Scholar 

  19. Nishimura, Y. et al. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat. Med. 15, 794–797 (2009).

    Article  CAS  Google Scholar 

  20. Yamayoshi, S., Ohka, S., Fujii, K. & Koike, S. Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J. Virol. 87, 3335–3347 (2013).

    Article  CAS  Google Scholar 

  21. Colman, P. M. Virus versus antibody. Structure 5, 591–593 (1997).

    Article  CAS  Google Scholar 

  22. Strauss, M. et al. Nectin-like interactions between poliovirus and its receptor trigger conformational changes associated with cell entry. J. Virol. 89, 4143–4157 (2015).

    Article  CAS  Google Scholar 

  23. Plevka, P. et al. Interaction of decay-accelerating factor with echovirus 7. J. Virol. 84, 12665–12674 (2010).

    Article  CAS  Google Scholar 

  24. Kotecha, A. et al. Rules of engagement between αvβ6 integrin and foot-and-mouth disease virus. Nat. Commun. 8, 15408 (2017).

    Article  CAS  Google Scholar 

  25. Arthur Huang, K.-Y. et al. Epitope-associated and specificity-focused features of EV71-neutralizing antibody repertoires from plasmablasts of infected children. Nat. Commun. 8, 762 (2017).

    Article  Google Scholar 

  26. Ren, J. et al. Structures of coxsackievirus A16 capsids with native antigenicity: implications for particle expansion, receptor binding, and immunogenicity. J. Virol. 89, 10500–10511 (2015).

    Article  CAS  Google Scholar 

  27. Yuan, S. et al. Identification of positively charged residues in enterovirus 71 capsid protein VP1 essential for production of infectious particles. J. Virol. 90, 741–752 (2016).

    Article  CAS  Google Scholar 

  28. Victorio, C. B. L. et al. Cooperative effect of the VP1 amino acids 98E, 145A and 169F in the productive infection of mouse cell lines by enterovirus 71 (BS strain). Emerg. Microbes Infect. 5, e60 (2016).

    Article  CAS  Google Scholar 

  29. Fujii, K. et al. VP1 amino acid residue 145 of enterovirus 71 is a key residue for its receptor attachment and resistance to neutralizing antibody during cynomolgus monkey infection. J. Virol. https://doi.org/10.1128/JVI.00682-18 (2018).

  30. Xu, L. et al. A broadly cross-protective vaccine presenting the neighboring epitopes within the VP1 GH loop and VP2 EF loop of enterovirus 71. Sci. Rep. 5, 12973 (2015).

    Article  CAS  Google Scholar 

  31. De Colibus, L. et al. More powerful virus inhibitors from structure-based analysis of HEV71 capsid-binding molecules. Nat. Struct. Mol. Biol. 21, 282–288 (2014).

    Article  CAS  Google Scholar 

  32. De Colibus, L. et al. Structure elucidation of coxsackievirus A16 in complex with GPP3 informs a systematic review of highly potent capsid binders to enteroviruses. PLoS Pathog. 11, e1005165 (2015).

    Article  Google Scholar 

  33. Mastronarde, D. N. SerialEM: a program for automated tilt series acquisition on Tecnai microscopes using prediction of specimen position. Microsc. Microanal. 9, 1182–1183 (2003).

    Google Scholar 

  34. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  Google Scholar 

  35. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  Google Scholar 

  36. Kivioja, T., Ravantti, J., Verkhovsky, A., Ukkonen, E. & Bamford, D. Local average intensity-based method for identifying spherical particles in electron micrographs. J. Struct. Biol. 131, 126–134 (2000).

    Article  CAS  Google Scholar 

  37. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  CAS  Google Scholar 

  38. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  Google Scholar 

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  40. Afonine, P., Headd, J., Terwilliger, T. & Adams, P. New tool: phenix.real_space_refine. Comput. Crystallogr. Newslett. 4, 43–44 (2013).

    Google Scholar 

  41. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  Google Scholar 

  42. Xiao, C. & Rossmann, M. G. Interpretation of electron density with stereographic roadmap projections. J. Struct. Biol. 158, 182–187 (2007).

    Article  CAS  Google Scholar 

  43. Organtini, L. J., Makhov, A. M., Conway, J. F., Hafenstein, S. & Carson, S. D. Kinetic and structural analysis of coxsackievirus B3 receptor interactions and formation of the A-particle. J. Virol. 88, 5755–5765 (2014).

    Article  Google Scholar 

  44. Baggen, J. et al. Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. Proc. Natl Acad. Sci. USA 115, 397–402 (2018).

    Article  CAS  Google Scholar 

  45. Querol-Audi, J. et al. Minor group human rhinovirus–receptor interactions: geometry of multimodular attachment and basis of recognition. FEBS Lett. 583, 235–240 (2009).

    Article  CAS  Google Scholar 

  46. DeLano, W. L. & Lam, J. W. PyMOL: a communications tool for computational models. Abstr. Pap. Am. Chem. Soc. 230, U1371–U1372 (2005).

    Google Scholar 

  47. Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.Z. is supported by a China Scholarship Council/University of Oxford scholarship. J.T.K. is supported by a Sanofi Pasteur studentship. J.R. is supported by the Wellcome Trust (101122/Z/13/Z). D.I.S. and E.E.F. are supported by the UK Medical Research Council (MR/N00065X/1). This is a contribution from the UK Instruct-ERIC Centre. The Wellcome Centre for Human Genetics is supported by the Wellcome Trust (grant 090532/Z/09/Z).

Author information

Authors and Affiliations

Authors

Contributions

D.Z. and A.K. performed the experiments. D.Z., J.R. and D.I.S. analysed the results and, together with E.E.F. and Y.Z., wrote the manuscript. All authors read and revised the manuscript.

Corresponding authors

Correspondence to Jingshan Ren or David I. Stuart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4, Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Zhao, Y., Kotecha, A. et al. Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nat Microbiol 4, 414–419 (2019). https://doi.org/10.1038/s41564-018-0319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0319-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing