Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1

Abstract

To survive under conditions of stress, such as nutrient deprivation, bacterial 70S ribosomes dimerize to form hibernating 100S particles1. In γ-proteobacteria, such as Escherichia coli, 100S formation requires the ribosome modulation factor (RMF) and the hibernation promoting factor (HPF)2,3,4. Here we present single-particle cryo-electron microscopy structures of hibernating 70S and 100S particles isolated from stationary-phase E. coli cells at 3.0 Å and 7.9 Å resolution, respectively. The structures reveal the binding sites for HPF and RMF as well as the unexpected presence of deacylated E-site transfer RNA and ribosomal protein bS1. HPF interacts with the anticodon-stem-loop of the E-tRNA and occludes the binding site for the messenger RNA as well as A- and P-site tRNAs. RMF facilitates stabilization of a compact conformation of bS1, which together sequester the anti-Shine-Dalgarno sequence of the 16S ribosomal RNA (rRNA), thereby inhibiting translation initiation. At the dimerization interface, the C-terminus of uS2 probes the mRNA entrance channel of the symmetry-related particle, thus suggesting that dimerization inactivates ribosomes by blocking the binding of mRNA within the channel. The back-to-back E. coli 100S arrangement is distinct from 100S particles observed previously in Gram-positive bacteria5,6,7,8, and reveals a unique role for bS1 in translation regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cryo-EM structure of the hibernating 70S ribosome.
Fig. 2: Interaction of HPF and RMF on the 30S subunit.
Fig. 3: Conformation and interaction of bS1 on the hibernating 70S.
Fig. 4: Cryo-EM structure of the hibernating 100S particle.

Similar content being viewed by others

References

  1. Gohara, D. W. & Yap, M. F. Survival of the drowsiest: the hibernating 100S ribosome in bacterial stress management. Curr. Genet. 64, 753–760 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Wada, A., Yamazaki, Y., Fujita, N. & Ishihama, A. Structure and probable genetic location of a ribosome modulation factor associated with 100S ribosomes in stationary-phase Escherichia coli cells. Proc. Natl Acad. Sci. USA 87, 2657–2661 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maki, Y., Yoshida, H. & Wada, A. Two proteins, YfiA and YhbH, associated with resting ribosomes in stationary phase Escherichia coli. Genes Cells 5, 965–974 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Ueta, M. et al. Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli. Genes Cells 10, 1103–1112 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Beckert, B. et al. Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization. EMBO J. 36, 2061–2072 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khusainov, I. et al. Structures and dynamics of hibernating ribosomes from Staphylococcus aureus mediated by intermolecular interactions of HPF. EMBO J. 36, 2073–2087 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matzov, D. et al. The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus. Nat. Commun. 8, 723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Franken, L. E.et al. A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy. Nat. Commun. 8, 722 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yoshida, H. & Wada, A. The 100S ribosome: ribosomal hibernation induced by stress. Wiley Interdiscip. Rev. RNA 5, 723–732 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. McKay, S. L. & Portnoy, D. A. Ribosome hibernation facilitates tolerance of stationary-phase bacteria to aminoglycosides. Antimicrob. Agents Chemother. 59, 6992–6999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harms, A., Maisonneuve, E. & Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, 1390–1399 (2016).

    Article  CAS  Google Scholar 

  12. Kato, T. et al. Structure of the 100S ribosome in the hibernation stage revealed by electron cryomicroscopy. Structure 18, 719–724 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Ortiz, J. O. et al. Structure of hibernating ribosomes studied by cryoelectron tomography in vitro and in situ. J. Cell Biol. 190, 613–621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vila-Sanjurjo, A., Schuwirth, B. S., Hau, C. W. & Cate, J. H. D. Structural basis for the control of translational initiation during stress. Nat. Struct. Mol. Biol. 11, 1054–1059 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Polikanov, Y. S., Blaha, G. M. & Steitz, T. A. How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336, 915–918 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dunkle, J. A. et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981–984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 13, 298–309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dunkle, J. A. & Cate, J. H. in Ribosomes. Structure, Function, and Dynamics (eds Wintermeyer, W., Rodnina, M.V. & Green R.) Ch. 6, 65–73 (Springer, Vienna, 2011).

  19. Sengupta, J., Agrawal, R. & Frank, J. Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messengerRNA. Proc. Natl Acad. Sci. USA 98, 11991–11996 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Byrgazov, K. et al. Structural basis for the interaction of protein S1 with the Escherichia coli ribosome. Nucleic Acids Res. 43, 661–673 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Park, E. et al. Structure of the SecY channel during initiation of protein translocation. Nature 506, 102–106 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Demo, G. et al. Structure of RNA polymerase bound to ribosomal 30S subunit. eLife 6, e28560 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Salah, P. et al. Probing the relationship between Gram-negative and Gram-positive S1 proteins by sequence analysis. Nucleic Acids Res. 37, 5578–5588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Subramanian, A.-R. Structure and functions of ribosomal protein S1. Prog. Nucleic Acid Res. Mol. Biol. 28, 101–142 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Qu, X., Lancaster, L., Noller, H. F., Bustamante, C. & Tinoco, I.Jr.. Ribosomal protein S1 unwinds double-stranded RNA in multiple steps. Proc. Natl Acad. Sci., USA 109, 14458–14463 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duval, M. et al. Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation. PLoS Biol. 11, e1001731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aliprandi, P. et al. S1 ribosomal protein functions in translation initiation and ribonuclease RegB activation are mediated by similar RNA-protein interactions: an NMR and SAXS analysis. J. Biol. Chem. 283, 13289–13301 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huter, P., Muller, C., Arenz, S., Beckert, B. & Wilson, D. N. Structural basis for ribosome rescue in bacteria. Trends Biochem. Sci. 42, 669–680 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Saguy, M., Gillet, R., Skorski, P., Hermann-Le Denmat, S. & Felden, B. Ribosomal protein S1 influences trans-translation in vitro and in vivo. Nucleic Acids Res. 35, 2368–2376 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 A reconstruction of rotavirus VP6. eLife 4, e06980 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5, e18722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosenthal, P. & Henderson, R. Optimal determination of particle orientation, absolute hand, and control loss in single particle electron microscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moriya, T. et al. High-resolution single particle analysis from electron cryo-microscopy images using SPHIRE. J .Vis. Exp. 123, e55448 (2017).

    Google Scholar 

  37. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D71, 136–153 (2015).

    Google Scholar 

  39. Adams, P. D. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D66, 213–221 (2010).

    Google Scholar 

  40. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  PubMed  Google Scholar 

  42. Florin, T. et al. An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nat. Struct. Mol. Biol. 24, 752–757 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pettersen, E. F. et al. UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D60, 2126–2132 (2004).

    CAS  Google Scholar 

  45. Arenz, S.et al. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest. Nat. Commun. 7, 12026 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Giraud, P., Crechet, J. B., Uzan, M., Bontems, F. & Sizun, C. Resonance assignment of the ribosome binding domain of E. coli ribosomal protein S1. Biomol. NMR Assign. 9, 107–111 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Polikanov, Y. S., Steitz, T. A. & Innis, C. A. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 21, 787–793 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kaminishi, T. et al. A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction. Structure 15, 289–297 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Yusupova, G., Jenner, L., Rees, B., Moras, D. & Yusupov, M. Structural basis for messenger RNA movement on the ribosome. Nature 444, 391–394 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Rieder and C. Ungewickell for expert technical assistance and C. Schmidt for IT support. This research was supported by grants from the Deutsche Forschungsgemeinschaft SPP1879 (to D.N.W), CZ234/1–1 (to A.C.), FOR1805 (to D.N.W., Z.I. and R.B.).

Author information

Authors and Affiliations

Authors

Contributions

D.N.W. designed the study. B.B. prepared the cryo-EM sample. O.B. collected the single-particle cryo-EM data, which was processed by B.B. The tilt data were collected and processed by M.T. A.C. performed the microarray analysis. B.B. built and refined the molecular models and generated the figures. B.B., M.T., R.B., Z.I., J.P. and D.N.W. interpreted the results. B.B. and D.N.W. wrote the paper.

Corresponding authors

Correspondence to Jürgen M. Plitzko or Daniel N. Wilson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Data availability

Cryo-electron density maps of the hibernating 70S and 100S ribosomal particles are available through the EMDB with entry codes EMD-0137 and EMD-0139, respectively. Molecular models of the hibernating 70S and 100S ribosomal particles are deposited in the Protein Data Bank with entry code 6H4N and 6H58, respectively. The data that support the findings of this study are available from the corresponding authors on request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11, Supplementary Table 1.

Reporting Summary

Supplementary Video 1

Overview of the cryo-EM maps for hibernating 70S and 100S particles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beckert, B., Turk, M., Czech, A. et al. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1. Nat Microbiol 3, 1115–1121 (2018). https://doi.org/10.1038/s41564-018-0237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0237-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing