Abstract

The global epidemic of drug-resistant tuberculosis is a catastrophic example of how antimicrobial resistance is undermining the public health gains made possible by combination drug therapy. Recent evidence points to unappreciated bacterial factors that accelerate the emergence of drug resistance. In a genome-wide association study of Mycobacterium tuberculosis isolates from China, we find mutations in the gene encoding the transcription factor prpR enriched in drug-resistant strains. prpR mutations confer conditional drug tolerance to three of the most effective classes of antibiotics by altering propionyl-CoA metabolism. prpR-mediated drug tolerance is carbon-source dependent, and while readily detectable during infection of human macrophages, is not captured by standard susceptibility testing. These data define a previously unrecognized and clinically prevalent class of M. tuberculosis variants that undermine antibiotic efficacy and drive drug resistance.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Global Tuberculosis Report 2017 (WHO, 2017); http://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf

  2. 2.

    Gegia, M., Winters, N., Benedetti, A., van Soolingen, D. & Menzies, D. Treatment of isoniazid-resistant tuberculosis with first-line drugs: a systematic review and meta-analysis. Lancet Infect. Dis. 17, 223–234 (2017).

  3. 3.

    Weis, S. E. et al. The effect of directly observed therapy on the rates of drug resistance and relapse in tuberculosis. N. Engl. J. Med. 330, 1179–1184 (1994).

  4. 4.

    Pasipanodya, J. G. & Gumbo, T. A meta-analysis of self-administered vs directly observed therapy effect on microbiologic failure, relapse, and acquired drug resistance in tuberculosis patients. Clin. Infect. Dis. 57, 21–31 (2013).

  5. 5.

    Gillespie, S. H. et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N. Engl. J. Med. 371, 1577–1587 (2014).

  6. 6.

    Jindani, A. et al. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N. Engl. J. Med. 371, 1599–1608 (2014).

  7. 7.

    Merle, C. S. et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. N. Engl. J. Med. 371, 1588–1598 (2014).

  8. 8.

    Fridman, O., Goldberg, A., Ronin, I., Shoresh, N. & Balaban, N. Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513, 418–421 (2014).

  9. 9.

    Van den Bergh, B. et al. Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nat. Microbiol. 1, 16020 (2016).

  10. 10.

    Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–30 (2016).

  11. 11.

    Lewis, K. Persister cells. Annu. Rev. Microbiol. 64, 357–372 (2010).

  12. 12.

    Mulcahy, L., Burns, J., Lory, S. & Lewis, K. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J. Bacteriol. 192, 6191–6199 (2010).

  13. 13.

    Lafleur, M. D., Qi, Q. & Lewis, K. Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob. Agents Chemother. 54, 39–44 (2010).

  14. 14.

    Keren, I., Minami, S., Rubin, E. & Lewis, K. Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. mBio 2, e00100–11 (2011).

  15. 15.

    Gomez, J. E. & McKinney, J. D. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis 84, 29–44 (2004).

  16. 16.

    Wayne, L. G. & Hayes, L. G. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun. 64, 2062–2069 (1996).

  17. 17.

    Xie, Z., Siddiqi, N. & Rubin, E. J. Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 49, 4778–4780 (2005).

  18. 18.

    Adams, K. N. et al. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145, 39–53 (2011).

  19. 19.

    Dhar, N. & McKinney, J. D. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc. Natl Acad. Sci. USA 107, 12275–12280 (2010).

  20. 20.

    Levin, B. R. & Rozen, D. E. Non-inherited antibiotic resistance. Nat. Rev. Microbiol. 4, 556–562 (2006).

  21. 21.

    Levin-Reisman, I. et al. Antibiotic tolerance facilitates the evolution of resistance. Science 355, 826–830 (2017).

  22. 22.

    Zhao, Y. et al. National survey of drug-resistant tuberculosis in China. N. Engl. J. Med. 366, 2161–2170 (2012).

  23. 23.

    Comas, I. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182 (2013).

  24. 24.

    Luo, T. et al. Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc. Natl Acad. Sci. USA 112, 8136–41 (2015).

  25. 25.

    Casali, N. et al. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res. 22, 735–745 (2012).

  26. 26.

    Cohen, K. A. et al. Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med. 12, e1001880 (2015).

  27. 27.

    Farhat, M. R. et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat. Genet. 45, 1183–1189 (2013).

  28. 28.

    Manson, A. L. et al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat. Genet. 49, 395–402 (2017).

  29. 29.

    Zhang, H. et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat. Genet. 45, 1255–1260 (2013).

  30. 30.

    Walker, T. M. et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect. Dis. 15, 1193–202 (2015).

  31. 31.

    Sun, L., Zhang, L., Zhang, H. & He, Z.-G. Characterization of a bifunctional β-lactamase/ribonuclease and its interaction with a chaperone-like protein in the pathogen Mycobacterium tuberculosis H37Rv. Biochem. 76, 350–358 (2011).

  32. 32.

    Taverniti, V., Forti, F., Ghisotti, D. & Putzer, H. Mycobacterium smegmatis RNase J is a 5ʹ–3ʹ exo-/endoribonuclease and both RNase J and RNase E are involved in ribosomal RNA maturation. Mol. Microbiol. 82, 1260–1276 (2011).

  33. 33.

    Guerra-Assunção, J. A. et al. Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. Elife 4, e05166 (2015).

  34. 34.

    Casali, N. et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat. Genet. 46, 279–286 (2014).

  35. 35.

    Holt, K. E. et al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat. Genet. 50, 849–856 (2018).

  36. 36.

    Liu, Q. et al. Within patient microevolution of Mycobacterium tuberculosis correlates with heterogeneous responses to treatment. Sci. Rep. 5, 17507 (2015).

  37. 37.

    Pandey, A. K. & Sassetti, C. M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl Acad. Sci. USA 105, 4376–4380 (2008).

  38. 38.

    Griffin, J. E. et al. Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem. Biol. 19, 218–227 (2012).

  39. 39.

    Masiewicz, P., Brzostek, A., Wolański, M., Dziadek, J. & Zakrzewska-Czerwińska, J. A novel role of the PrpR as a transcription factor involved in the regulation of methylcitrate pathway in Mycobacterium tuberculosis. PLoS ONE 7, e43651 (2012).

  40. 40.

    Muñoz-Elías, E. J., Upton, A. M., Cherian, J. & McKinney, J. D. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol. Microbiol. 60, 1109–1122 (2006).

  41. 41.

    KATO, N. The free and bound forms of the serum vitamin B12 in various animal species. J. Vitaminol. (Kyoto) 6, 132–138 (1960).

  42. 42.

    Micklinghoff, J. C. et al. Role of the transcriptional regulator RamB (Rv0465c) in the control of the glyoxylate cycle in Mycobacterium tuberculosis. J. Bacteriol. 191, 7260–7269 (2009).

  43. 43.

    Eoh, H. & Rhee, K. Y. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc. Natl Acad. Sci. USA 111, 4976–4981 (2014).

  44. 44.

    Savvi, S. et al. Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J. Bacteriol. 190, 3886–3895 (2008).

  45. 45.

    Somerville, W., Thibert, L., Schwartzman, K. & Behr, M. A. Extraction of Mycobacterium tuberculosis DNA: a question of containment. J. Clin. Microbiol. 43, 2996–2997 (2005).

  46. 46.

    Patel, R. & Jain, M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7, e30619 (2012).

  47. 47.

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

  48. 48.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  49. 49.

    Comas, I. et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat. Genet. 42, 498–503 (2010).

  50. 50.

    Fouts, D. Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res. 34, 5839–5851 (2006).

  51. 51.

    Sandgren, A. et al. Tuberculosis drug resistance mutation database. PLoS Med. 6, e1000002 (2009).

  52. 52.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

  53. 53.

    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

  54. 54.

    Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

  55. 55.

    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

  56. 56.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

  57. 57.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

  58. 58.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

  59. 59.

    Martin, C. J. et al. Digitally barcoding Mycobacterium tuberculosis reveals in vivo infection dynamics in the macaque model of tuberculosis. mBio 8, e00312–17 (2017).

  60. 60.

    Blumenthal, A., Trujillo, C., Ehrt, S. & Schnappinger, D. Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo. PLoS ONE 5, e15667 (2010).

Download references

Acknowledgements

Support was generously provided by the National Major Science and Technology Project of China (2012ZX10003002001-001; 2014ZX10003002) to Y.Z.; the National Program on Key Basic Research Project of China (2014CB744403973) and the CAMS Innovation Fund for Medical Sciences (2016-I2M-1-013) to Q.J.; the National Institute of Health (5U19AI109755-04) to S.M.F.; and NIH pre-doctoral training grant support (5T32AI007638-15 to E. J. Rubin and 5T32-AI049928-14 to D. Wirth) to N.D.H.

Author information

Author notes

  1. These authors contributed equally to this work: Nathan D. Hicks, Jian Yang, Xiaobing Zhang, Bing Zhao.

Affiliations

  1. Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA

    • Nathan D. Hicks
    • , Yonatan H. Grad
    •  & Sarah M. Fortune
  2. MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Centre for Tuberculosis, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

    • Jian Yang
    • , Xiaobing Zhang
    • , Liguo Liu
    • , Zhili Chang
    • , Jie Dong
    • , Lilian Sun
    • , Yafang Zhu
    •  & Qi Jin
  3. National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China

    • Bing Zhao
    • , Xichao Ou
    • , Hui Xia
    • , Yang Zhou
    • , Shengfen Wang
    •  & Yanlin Zhao
  4. Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

    • Yonatan H. Grad
  5. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA

    • Sarah M. Fortune

Authors

  1. Search for Nathan D. Hicks in:

  2. Search for Jian Yang in:

  3. Search for Xiaobing Zhang in:

  4. Search for Bing Zhao in:

  5. Search for Yonatan H. Grad in:

  6. Search for Liguo Liu in:

  7. Search for Xichao Ou in:

  8. Search for Zhili Chang in:

  9. Search for Hui Xia in:

  10. Search for Yang Zhou in:

  11. Search for Shengfen Wang in:

  12. Search for Jie Dong in:

  13. Search for Lilian Sun in:

  14. Search for Yafang Zhu in:

  15. Search for Yanlin Zhao in:

  16. Search for Qi Jin in:

  17. Search for Sarah M. Fortune in:

Contributions

X.Z., B.Z., X.C.O., S.F.W., H.X. and Y. Zhou were responsible for cohort study and strain set assembly. Q.J. and Y. Zhao were responsible for genome sequencing study design and supervision. J.Y., X.Z., L.L., Z.C., J.D., L.S. and Y. Zhu were responsible for genome sequencing and variant analysis. N.D.H., J.Y., Y.G. and S.M.F. were responsible for genome-wide association study. N.D.H. and S.M.F. were responsible for experimental validation. N.D.H., J.Y. and S.M.F. were responsible for manuscript preparation.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Yanlin Zhao or Qi Jin or Sarah M. Fortune.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–7.

  2. Reporting Summary

  3. Supplementary Tables

    Supplementary Tables 1–8.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41564-018-0218-3