Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A unique cytoplasmic ATPase complex defines the Legionella pneumophila type IV secretion channel

Abstract

Type IV secretion systems (T4SSs) are complex machines used by bacteria to deliver protein and DNA complexes into target host cells1,2,3,4,5. Conserved ATPases are essential for T4SS function, but how they coordinate their activities to promote substrate transfer remains poorly understood. Here, we show that the DotB ATPase associates with the Dot–Icm T4SS at the Legionella cell pole through interactions with the DotO ATPase. The structure of the Dot–Icm apparatus was solved in situ by cryo-electron tomography at 3.5 nm resolution and the cytoplasmic complex was solved at 3.0 nm resolution. These structures revealed a cell envelope-spanning channel that connects to the cytoplasmic complex. Further analysis revealed a hexameric assembly of DotO dimers associated with the inner membrane complex, and a DotB hexamer associated with the base of this cytoplasmic complex. The assembly of a DotB–DotO energy complex creates a cytoplasmic channel that directs the translocation of substrates through the T4SS. These data define distinct stages in Dot–Icm machine biogenesis, advance our understanding of channel activation, and identify an envelope-spanning T4SS channel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ATP-bound DotB displays static polar localization.
Fig. 2: The ATPase DotO is essential for polar recruitment of DotB.
Fig. 3: The ATPase DotO is placed above DotB.
Fig. 4: In situ structure of the Dot–Icm type IVB secretion machine revealed by cryo-electron tomography and subtomogram averaging.
Fig. 5: The cytoplasmic complex, showing 6-fold symmetry, composed of ATPases DotO and DotB.

Similar content being viewed by others

References

  1. Christie, P. J., Whitaker, N. & Gonzalez-Rivera, C. Mechanism and structure of the bacterial type IV secretion systems. Biochim. Biophys. Acta 1843, 1578–1591 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Gonzalez-Rivera, C., Bhatty, M. & Christie, P. J. Mechanism and function of type IV secretion during infection of the human host. Microbiol. Spectr. 4, 1–29 (2016).

    Google Scholar 

  3. Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. Trokter, M., Felisberto-Rodrigues, C., Christie, P. J. & Waksman, G. Recent advances in the structural and molecular biology of type IV secretion systems. Curr. Opin. Struct. Biol. 27, 16–23 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kubori, T. & Nagai, H. The type IVB secretion system: an enigmatic chimera. Curr. Opin. Microbiol. 29, 22–29 (2015).

    Article  PubMed  CAS  Google Scholar 

  6. Low, H. H. et al. Structure of a type IV secretion system. Nature 508, 550–553 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kubori, T. et al. Native structure of a type IV secretion system core complex essential for Legionella pathogenesis. Proc. Natl Acad. Sci. USA 111, 11804–11809 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ghosal, D., Chang, Y. W., Jeong, K. C., Vogel, J. P. & Jensen, G. J. In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography. EMBO Rep. 18, 726–732 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jeong, K. C., Ghosal, D., Chang, Y. W., Jensen, G. J. & Vogel, J. P. Polar delivery of Legionella type IV secretion system substrates is essential for virulence. Proc. Natl Acad. Sci. USA 114, 8077–8082 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Vincent, C. D. et al. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 62, 1278–1291 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. Sexton, J. A., Yeo, H. J . & Vogel, J. P. Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export. Mol. Microbiol. 57, 70–84 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. Sutherland, M. C., Nguyen, T. L., Tseng, V. & Vogel, J. P. The Legionella IcmSW complex directly interacts with DotL to mediate translocation of adaptor-dependent substrates. PLoS Path 8, e1002910 (2012).

    Article  CAS  Google Scholar 

  13. Vincent, C. D., Friedman, J. R., Jeong, K. C., Sutherland, M. C. & Vogel, J. P. Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol 85, 378–391 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kwak, M. J. et al. Architecture of the type IV coupling protein complex of Legionella pneumophila . Nat. Microbiol. 2, 17114 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Dang, T. A. & Christie, P. J. The VirB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface. J. Bacteriol. 179, 453–462 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dang, T. A., Zhou, X. R., Graf, B. & Christie, P. J. Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter. Mol. Microbiol 32, 1239–1253 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Durand, E., Oomen, C. & Waksman, G. Biochemical dissection of the ATPase TraB, the VirB4 homologue of the Escherichia coli pKM101 conjugation machinery. J. Bacteriol. 192, 2315–2323 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Durand, E., Waksman, G. & Receveur-Brechot, V. Structural insights into the membrane-extracted dimeric form of the ATPase TraB from the Escherichia coli pKM101 conjugation system. BMC Struct. Biol. 11, 4 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wallden, K. et al. Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. Proc. Natl Acad. Sci. USA 109, 11348–11353 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Roy, C. R. & Isberg, R. R. Topology of Legionella pneumophila DotA: an inner membrane protein required for replication in macrophages. Infect. Immun. 65, 571–578 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Buscher, B. A. et al. The DotL protein, a member of the TraG-coupling protein family, is essential for viability of Legionella pneumophila strain Lp02. J. Bacteriol. 187, 2927–2938 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Merriam, J. J., Mathur, R., Maxfield-Boumil, R. & Isberg, R. R. Analysis of the Legionella pneumophila fliI gene: intracellular growth of a defined mutant defective for flagellum biosynthesis. Infect. Immun. 65, 2497–2501 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Chetrit, D. et al. Negative regulation of the endocytic adaptor disabled-2 (Dab2) in mitosis. J. Biol. Chem. 286, 5392–5403 (2011).

    Article  PubMed  CAS  Google Scholar 

  24. Zuckman, D. M., Hung, J. B. & Roy, C. R. Pore-forming activity is not sufficient for Legionella pneumophila phagosome trafficking and intracellular growth. Mol. Microbiol. 32, 990–1001 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. Hu, B., Lara-Tejero, M., Kong, Q., Galan, J. E. & Liu, J. In situ molecular architecture of the Salmonella type III secretion machine. Cell 168, 1065–1074 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Morado, D. R., Hu, B. & Liu, J. Using Tomoauto: A protocol for high-throughput automated cryo-electron tomography. J. Vis. Exp. 107, e53608 (2016).

    Google Scholar 

  27. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  28. Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  PubMed  CAS  Google Scholar 

  30. Agulleiro, J. I. & Fernandez, J. J. Tomo3D 2.0—exploitation of advanced vector extensions (AVX) for 3D reconstruction. J. Struct. Biol. 189, 147–152 (2015).

    Article  PubMed  Google Scholar 

  31. Hu, B. et al. Visualization of the type III secretion sorting platform of Shigella flexneri. Proc. Natl Acad. Sci. USA 112, 1047–1052 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. Agard, D. A., Hiraoka, Y., Shaw, P. & Sedat, J. W. Fluorescence microscopy in three dimensions. Methods Cell Biol. 30, 353–377 (1989).

    Article  PubMed  CAS  Google Scholar 

  34. Frick-Cheng, A. E. et al. Molecular and structural analysis of the Helicobacter pylori cag type IV secretion system core complex. mBio 7, e02001–e02015 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Berger, K. H. & Isberg, R. R. Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol. Microbiol 7, 7–19 (1993).

    Article  PubMed  CAS  Google Scholar 

  36. Andrews, H. L., Vogel, J. P. & Isberg, R. R. Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway. Infect. Immun. 66, 950–958 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Vogel, J. P., Andrews, H. L., Wong, S. K. & Isberg, R. R. Conjugative transfer by the virulence system of Legionella pneumophila. Science 279, 873–876 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. Finan, T. M., Kunkel, B., De Vos, G. F. & Signer, E. R. Second symbiotic megaplasmid in R hizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J. Bacteriol. 167, 66–72 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

B.H. and J.L were supported by the National Institutes of Health (R01AI087946 and R01GM107629) and the Welch Foundation (AU-1714). D.C. and C.R. were supported by the NIH (R37AI041699 and R21AI130671). P.C. was supported by the NIH (R01GM48476). We are grateful to S.S. Ivanov (Louisiana State University) for insightful suggestions and critique; H. Nagai (Gifu University) for the L. pneumophila ΔT4SS strain; R.R. Isberg (Tufts University) for the antibody to DotO; E.H. Rego (Yale University) for technical assistance with FRAP.

Author information

Authors and Affiliations

Authors

Contributions

B.H., C.R., D.C. and J.L. designed research. D.C. constructed the L. pneumophila expression plasmids and strains. B.H. and D.C. collected and together with C.R., J.L. and P.C. analysed the data. B.H., C.R., D.C., J.L. and P.C. wrote the paper.

Corresponding authors

Correspondence to Craig R. Roy or Jun Liu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, and Supplementary Tables 1 and 2.

Reporting Summary

Supplementary Video 1

Real-time visualization of DotB–sfGFP, sfGFP, and DotBE191K–sfGFP expressed from dot dotB operon in Legionella pneumophila.

Supplementary Video 2

3D visualization of a tomographic reconstruction and the intact T4SS machine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetrit, D., Hu, B., Christie, P.J. et al. A unique cytoplasmic ATPase complex defines the Legionella pneumophila type IV secretion channel. Nat Microbiol 3, 678–686 (2018). https://doi.org/10.1038/s41564-018-0165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0165-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing