Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human cytomegalovirus reprogrammes haematopoietic progenitor cells into immunosuppressive monocytes to achieve latency

Abstract

The precise cell type hosting latent human cytomegalovirus (HCMV) remains elusive. Here, we report that HCMV reprogrammes human haematopoietic progenitor cells (HPCs) into a unique monocyte subset to achieve latency. Unlike conventional monocytes, this monocyte subset possesses higher levels of B7-H4, IL-10 and inducible nitric oxide synthase (iNOS), a longer lifespan and strong immunosuppressive capacity. Cell sorting of peripheral blood from latently infected human donors confirms that only this monocyte subset, representing less than 0.1% of peripheral mononuclear cells, is HCMV genome-positive but immediate-early-negative. Mechanistic studies demonstrate that HCMV promotes the differentiation of HPCs into this monocyte subset by activating cellular signal transducer and activator of transcription 3 (STAT3). In turn, this monocyte subset generates a high level of nitric oxide (NO) to silence HCMV immediate-early transcription and promote viral latency. By contrast, the US28-knockout HCMV mutant, which is incapable of activating STAT3, fails to reprogramme the HPCs and achieve latency. Our findings reveal that via activating the STAT3–iNOS–NO axis, HCMV differentiates human HPCs into a longevous, immunosuppressive monocyte subset for viral latency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HCMV NR-1 infection reprogrammes human CD34+ HPCs to achieve latent infection.
Fig. 2: HCMV NR-1 infection reprogrammes human CD34+ HPCs into a long-life monocyte subset at the late stage of infection.
Fig. 3: NR-1-infected CD34+ HPCs at a late stage of infection (14 dpi or later) posess a strong immunosuppressive capacity to T-cell proliferation in a manner of Mo-MDSCs but not granulocytic MDSCs.
Fig. 4: Cellular iNOS/NO induced by STAT3 activity play a critical role in suppressing HCMV IE1 expression and viral replication in HPCs.
Fig. 5: Role of STAT3 signalling pathway in modulating HPC differentiation during HCMV latent infection.
Fig. 6: US28-KO cannot establish latency in human CD34+ HPCs because it fails to activate the STAT3–iNOS–NO axis and reprogramme HPCs to an immunosuppressive monocyte subset.

Similar content being viewed by others

References

  1. Loewendorf, A. & Benedict, C. A. Modulation of host innate and adaptive immune defenses by cytomegalovirus: Timing is everything. J. Intern. Med. 267, 483–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sinclair, J. & Sissons, P. Latency and reactivation of human cytomegalovirus. J. Gen. Virol. 87, 1763–1779 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Sissons, J. G. & Carmichael, A. J. Clinical aspects and management of cytomegalovirus infection. J. Infect. 44, 78–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Reeves, M. B. & Sinclair, J. H. Analysis of latent viral gene expression in natural and experimental latency models of human cytomegalovirus and its correlation with histone modifications at a latent promoter. J. Gen. Virol. 91, 599–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Saffert, R. T., Penkert, R. R. & Kalejta, R. F. Cellular and viral control over the initial events of humancytomegalovirus experimental latency in CD34+ cells. J. Virol. 84, 5594–5604 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reeves, M. B. & Sinclair, J. H. Circulating dendritic cells isolated from healthy seropositive donors are sites of human cytomegalovirus reactivation in vivo. J. Virol. 87, 10660–10667 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bevan, I. S., Daw, R. A., Day, P. J., Ala, F. A. & Walker, M. R. Polymerase chain reaction for detection of human cytomegalovirus infection in a blood donor population. Br. J. Haematol. 78, 94–99 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Smith, M. S., Bentz, G. L., Alexander, J. S. & Yurochko, A. D. Human cytomegalovirus induces monocyte differentiation and migration as a strategy for dissemination and persistence. J. Virol. 78, 4444–4453 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Noriega, V. M. et al. Human cytomegalovirus modulates monocyte-mediated innate immune responses during short-term experimental latency in vitro. J. Virol. 88, 9391–9405 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Taylor-Wiedeman, J., Sissons, J. G., Borysiewicz, L. K. & Sinclair, J. H. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J. Gen. Virol. 72, 2059–2064 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Hahn, G., Jores, R. & Mocarski, E. S. Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc. Natl Acad. Sci. USA 95, 3937–3942 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mendelson, M., Monard, S., Sissons, P. & Sinclair, J. Detection of endogenous human cytomegalovirus inCD34+ bone marrow progenitors. J. Gen. Virol. 77, 3099–3102 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Reeves, M. B., Lehner, P. J., Sissons, J. G. & Sinclair, J. H. An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J. Gen. Virol. 86, 2949–2954 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Tarrant-Elorza, M., Rossetto, C. C. & Pari, G. S. Maintenance and replication of the human cytomegalovirus genome during latency. Cell Host Microbe 16, 43–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Rossetto, C. C., Tarrant-Elorza, M. & Pari, G. S. Cis and trans acting factors involved in humancytomegalovirus experimental and natural latent infection of CD14+ monocytes and CD34+ cells. PLoS Pathog. 9, e1003366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goodrum, F., Jordan, C. T., Terhune, S. S., High, K. & Shenk, T. Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations. Blood 104, 687–695 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Goodrum, F. D., Jordan, C. T., High, K. & Shenk, T. Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency. Proc. Natl Acad. Sci. USA 99, 16255–16260 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Slobedman, B. & Mocarski, E. S. Quantitative analysis of latent human cytomegalovirus. J. Virol. 73, 4806–4812 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bolovan-Fritts, C. A., Mocarski, E. S. & Wiedeman, J. A. Peripheral blood CD14+ cells from healthy subjects carry a circular conformation of latent cytomegalovirus genome. Blood 93, 394–398 (1999).

    CAS  PubMed  Google Scholar 

  20. Mason, G. M., Poole, E., Sissons, J. G., Wills, M. R. & Sinclair, J. H. Human cytomegalovirus latency alters the cellular secretome, inducing cluster of differentiation (CD)4+ T-cell migration and suppression of effector function. Proc. Natl Acad. Sci. USA 109, 14538–14543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weekes, M. P. et al. Latency-associated degradation of the MRP1 drug transporter during latent human cytomegalovirus infection. Science 340, 199–202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murphy, J. C., Fischle, W., Verdin, E. & Sinclair, J. H. Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J. 21, 1112–1120 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pan, C. et al. Human cytomegalovirus miR-UL148D facilitates latent viral infection by targeting host cell immediate early response gene 5. PLoS Pathog. 12, e1006007 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. O’Connor, C. M. & Murphy, E. A. A myeloid progenitor cell line capable of supporting human cytomegalovirus latency and reactivation, resulting in infectious progeny. J. Virol. 86, 9854–9865 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheung, A. K. et al. The role of the human cytomegalovirus UL111A gene in down-regulating CD4+ T-cell recognition of latently infected cells: Implications for virus elimination during latency. Blood 114, 4128–4137 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davis, T. A. et al. Phorbol esters induce differentiation of human CD34+ hemopoietic progenitors to dendritic cells: Evidence for protein kinase C-mediated signaling. J. Immunol. 160, 3689–3697 (1998).

    CAS  PubMed  Google Scholar 

  29. Addison, C. L., Hitt, M., Kunsken, D. & Graham, F. L. Comparison of the human versus murine cytomegalovirus immediate early gene promoters for transgene expression by adenoviral vectors. J. Gen. Virol. 78, 1653–1661 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Slinger, E. et al. HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6-STAT3 axis. Sci. Signal. 3, ra58 (2010).

    Article  PubMed  Google Scholar 

  32. Beisser, P. S., Laurent, L., Virelizier, J. L. & Michelson, S. Human cytomegalovirus chemokine receptor gene US28 is transcribed in latently infected THP-1 monocytes. J. Virol. 75, 5949–5957 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Langemeijer, E. V. et al. Constitutive β-catenin signaling by the viral chemokine receptor US28. PLoS ONE 7, e48935 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Croen, K. D. Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J. Clin. Invest. 91, 2446–2452 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guidotti, L. G., McClary, H., Loudis, J. M. & Chisari, F. V. Nitric oxide inhibits hepatitis B virus replication in the livers of transgenic mice. J. Exp. Med. 191, 1247–1252 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Everts, B. et al. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120, 1422–1431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spencer, J. V., Cadaoas, J., Castillo, P. R., Saini, V. & Slobedman, B. Stimulation of B lymphocytes by cmvIL-10 but not LAcmvIL-10. Virology 374, 164–169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Humby, M. S. & O’Connor, C. M. HCMV US28 is important for latent infection of hematopoietic progenitor cells. J. Virol. 90, 2959–2970 (2015).

    Article  PubMed  Google Scholar 

  39. Raftery, M. J. et al. Shaping phenotype, function, and survival of dendritic cells by cytomegalovirus-encoded IL-10. J. Immunol. 173, 3383–3391 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Crough, T. & Khanna, R. Immunobiology of human cytomegalovirus: From bench to bedside. Clin. Microbiol. Rev. 22, 76–98 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Halenius, A. & Hengel, H. Human cytomegalovirus and autoimmune disease. Biomed. Res. Int. 2014, 472978 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Daley-Bauer, L. P., Roback, L. J., Wynn, G. M. & Mocarski, E. S. Cytomegalovirus hijacks CX3CR1(hi) patrolling monocytes as immune-privileged vehicles for dissemination in mice. Cell Host Microbe 15, 351–362 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dunn, W. et al Human cytomegalovirus expresses novel microRNAs during productive viral infection. Cell Microbiol. 7, 1684–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Bian, Z. et al. Cd47-Sirpalpha interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells. Proc. Natl Acad. Sci. USA 113, E5434–E5443 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi, W. L. et al. Integrated miRNA and mRNA expression profiling in fetal hippocampus with Down syndrome. J. Biomed. Sci. 23, 48 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li, L. et al. Role of myeloid-derived suppressor cells in glucocorticoid-mediated amelioration of FSGS. J. Am. Soc. Nephrol. 26, 2183–2197 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bundscherer, A. et al. Cell harvesting method influences results of apoptosis analysis by annexin V staining. Anticancer Res. 33, 3201–3204 (2013).

    PubMed  Google Scholar 

  48. Liu, Y. et al. Signal regulatory protein (SIRPα), a cellular ligand for CD47, regulates neutrophil transmigration. J. Biol. Chem. 277, 10028–10036 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J.L. Littrell (Georgia State University, Atlanta, GA) for critical reading and constructive discussion of the manuscript. This work was supported by grants from the National Basic Research Program of China (973 Program) (2014CB542300), the National Natural Science Foundation of China (81101330, 31271378, 81250044 and 31600659), the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2014ZT05S136), the Research Special Fund for Public Welfare Industry of Health (201302018) and the NIH (RO1-AI050468, RO1-DE023935 and RO1-025462).

Author information

Authors and Affiliations

Authors

Contributions

D.Z., C.P., J.S., H.L. and Z.B. performed the experiments. D.Z., P.T., J.W., Y.L., F.L. and K.Z. analysed the data. D.Z., F.L. and K.Z. wrote the manuscript. F.L., C.-Y.Z. and K.Z. designed the experiments.

Corresponding authors

Correspondence to Jianguo Wu, Fenyong Liu, Chen-Yu Zhang or Ke Zen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Pan, C., Sheng, J. et al. Human cytomegalovirus reprogrammes haematopoietic progenitor cells into immunosuppressive monocytes to achieve latency. Nat Microbiol 3, 503–513 (2018). https://doi.org/10.1038/s41564-018-0131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0131-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing