Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deaminase-mediated multiplex genome editing in Escherichia coli

Abstract

In eukaryotes, the CRISPR–Cas9 system has now been widely used as a revolutionary genome engineering tool1, 2. However, in prokaryotes, the use of nuclease-mediated genome editing tools has been limited to negative selection for the already modified cells because of its lethality3, 4. Here, we report on deaminase-mediated targeted nucleotide editing (Target-AID)5 adopted in Escherichia coli. Cytidine deaminase PmCDA1 fused to the nuclease-deficient CRISPR–Cas9 system achieved specific point mutagenesis at the target sites in E. coli by introducing cytosine mutations without compromising cell growth. The cytosine-to-thymine substitutions were induced mainly within an approximately five-base window of target sequences on the protospacer adjacent motif-distal side, which can be shifted depending on the length of the single guide RNA sequence. Use of a uracil DNA glycosylase inhibitor6 in combination with a degradation tag (LVA tag)7 resulted in a robustly high mutation efficiency, which allowed simultaneous multiplex editing of six different genes. The major multi-copy transposase genes that consist of at least 41 loci were also simultaneously edited by using four target sequences. As this system does not rely on any additional or host-dependent factors, it may be readily applicable to a wide range of bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single mutagenesis using Target-AID in bacteria.
Fig. 2: Gain-of-function mutagenesis of the rpoB gene.
Fig. 3: Mutated positions and frequency using different lengths of sgRNAs.
Fig. 4: Multiplex mutagenesis.

Similar content being viewed by others

References

  1. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–827 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, Y., Buchholz, F., Muyrers, J. P. P. & Stewart, A. F. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Shimatani, Z. et al. Targeted base editing in rice and tomato using a CRISPR–Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441–443 (2017).

  6. Zhigang, W., Smith, D. G. & Mosbaugh, D. W. Overproduction and characterization of the uracil-DNA glycosylase inhibitor of bacteriophage PBS2. Gene 99, 31–37 (1991).

    Article  Google Scholar 

  7. Andersen, J. B. et al. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–2246 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Costantino, N. & Court, D. L. Enhanced levels of lambda red-mediated recombinants in mismatch repair mutants. Proc. Natl. Acad. Sci. USA 100, 15748–15753 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, H. H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, J. et al. An improved recombineering approach by adding RecA to lambda red recombination. Mol. Biotechnol. 32, 43–53 (2006).

    Article  PubMed  Google Scholar 

  12. Brouns, S. J. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Bowater, R. & Doherty, A. J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet. 2, 93–99 (2006).

  14. Cui, L. & Bikard, D. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. 44, 4243–4251 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang, Y. et al. Multigene editing in the Escherichia coli genome via the CRISPR–Cas9 system. Appl. Environ. Microbiol. 81, 2506–2514 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, Y. et al. Metabolic engineering of Escherichia coli using CRISPR–Cas9 meditated genome editing. Metab. Eng. 31, 13–21 (2015).

  18. Pyne, M. E., Moo-Young, M., Chung, D. A. & Chou, C. P. Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl. Environ. Microbiol. 81, 5103–5114 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    Article  PubMed  Google Scholar 

  20. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, L. et al. Engineering and optimising deaminase fusions for genome editing. Nat. Commun. 7, 13330 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, Y. et al. Bacillus subtilis genome editing using ssDNA with short homology regions. Nucleic Acids Res. 40, e91 (2012).

  23. Warming, S., Costantino, N., Court, D. L., Jenkins, N. A. & Copeland, N. G. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 33, e36 (2005).

  24. Jin, D. J., Walter, W. A. & Gross, C. A. Characterization of the termination phenotypes of rifampicin-resistant mutants. J. Mol. Biol. 202, 245–253 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Ran, F. A. et al. Double nicking by RNA-guided CRISPR cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rees, H. A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods 13, 1029–1035 (2016).

  28. Hess, G. T. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13, 1036–1042 (2016).

  29. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mitsunobu, H., Teramoto, J., Nishida, K. & Kondo, A. Beyond native Cas9: manipulating genomic information and function. Trends Biotechnol. 35, 983–996 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Jinek, M. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–822 (2012).

  32. Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE 4, e5553 (2009).

Download references

Acknowledgements

We would like to thank A. Miyabe and M. Kakimoto for their technical assistance. This work was supported by the Platform Project for Supporting in Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science) from the Japan Agency for Medical Research and Development (AMED). This work was also partly supported by a Special Coordination Fund for Promoting Science and Technology, Creation of Innovative Centers for Advanced Interdisciplinary Research Areas (Innovative Bioproduction Kobe) from the Ministry of Education, Culture, Sports and Technology (MEXT) of Japan; the Cross-ministerial Strategic Innovation Promotion Program; JSPS KAKENHI (grant number 26119710, 16K14654); and the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Contributions

S.B. and K.N. performed all of the experiments with help from all authors. S.B., K.N. and H.M. wrote the manuscript with input from all authors. T.A. provided technical advice. K.N. and A.K. conceived the project.

Corresponding authors

Correspondence to Keiji Nishida or Akihiko Kondo.

Ethics declarations

Competing interests

A provisional patent has been submitted in part entailing the reported approach.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 1–7.

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banno, S., Nishida, K., Arazoe, T. et al. Deaminase-mediated multiplex genome editing in Escherichia coli. Nat Microbiol 3, 423–429 (2018). https://doi.org/10.1038/s41564-017-0102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-017-0102-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing